

UNIVERSITI PUTRA MALAYSIA

EFFECTIVENESS OF THREE SOLID PHASE EXTRACTION ADSORBENTS FOR SAMPLE CLEAN-UP PRIOR TO GAS CHROMATOGRAPHY ANALYSIS OF ORGANOCHLORINE AND PYRETHROID PESTICIDES IN FRUITS AND VEGETABLES

ZAWIYAH SHARIF

FSTM 2006 28

EFFECTIVENESS OF THREE SOLID PHASE EXTRACTION ADSORBENTS FOR SAMPLE CLEAN-UP PRIOR TO GAS CHROMATOGRAPHY ANALYSIS OF ORGANOCHLORINE AND PYRETHROID PESTICIDES IN FRUITS AND VEGETABLES

By

ZAWIYAH SHARIF

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master Science

August 2006

Dedicated to my beloved mak and abah, and the rest of the family members

Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTIVENESS OF THREE SOLID PHASE EXTRACTION ADSORBENTS FOR SAMPLE CLEAN-UP PRIOR TO GAS CHROMATOGRAPHY ANALYSIS OF ORGANOCHLORINE AND PYRETHROID PESTICIDES IN FRUITS AND VEGETABLES

By

ZAWIYAH SHARIF

August 2006

Chairman : Professor Yaakob Che Man, PhD

Faculty : Food Science and Technology

Three solid phase extraction (SPE) cartridges, based on anion exchanger and nonpolar interactions, have been evaluated as clean-up columns prior to organochlorine and pyrethroid pesticides analysis in fruits and vegetables samples. Without a clean-up method the interferences in the fruits and vegetables affected the quantitation of organochlorine and pyrethroid pesticides in fruits and vegetables samples. The objective of this study is to compare the effectiveness between SAX/PSA, Florisil and C18 SPE clean-up columns to eliminate matrix interferences from grape, orange, tomato, carrot and green mustard in the determination of organochlorine (gamma-HCH, heptachlor, aldrin, dieldrin, endrin, captafol) and pyrethroid (permethrin,

cypermethrin, fenvalerate) pesticides using gas chromatography with electron capture detection (GC-ECD).

The results showed that SAX/PSA was the most effective clean-up column as compared to Florisil and C18. The mean recoveries were between 70-120% for all samples at fortification levels of 0.01, 0.02 and 0.1 mg/kg, except for captafol that was below 70%. Although Florisil was not effective in removing interferences as significantly as SAX/PSA, the analytical recoveries were between 70 and 120% for all samples at fortification levels of 0.01, 0.02 and 0.1 mg/kg, except for captafol, which was more than 120%. In contrast, the C18 column showed that the mean recovery for captafol was within 70-120% for grape at fortification levels of 0.01, 0.02 and 0.1 mg/kg. In addition, the C18 column resulted in unacceptable range of mean recoveries for heptachlor, aldrin and permethrin from grape at all fortification levels and permethrin from orange at 0.01 and 0.02 mg/kg fortification levels.

The SPE extracts produce cleaner chromatograms allowing quantitation of pesticides by GC-ECD after ethyl acetate extraction with a limit of detection (LOD) between 0.003 and 0.015 mg/kg in grape samples using SAX/PSA clean-up column. The method was confirmed by gas chromatography-mass spectrometry (GC-MS) which able to detect cypermethrin in tomato, chinese parsley, chinese celery, chilli, brinjal, french beans, green mustard and capsicum from the determination of a total of 508 samples obtained from Malaysian markets. Only the mean value of cypermethrin in

brinjal was found to exceed the permissible level according to the Malaysia Food Regulations 1985.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KEBERKESANAN DI ANTARA TIGA PENYERAP PENGEKSTRAKAN FASA PEPEJAL (SPE) UNTUK MEMBERSIH SAMPEL SEBELUM MENGGUNAKAN KROMATOGRAFI GAS UNTUK ANALISA RACUN PEROSAK ORGANOKLORIN DAN PIRETROID DI DALAM BUAHAN DAN SAYURAN

Oleh

ZAWIYAH SHARIF

Ogos 2006

Pengerusi : Profesor Yaakob Che Man, PhD

Fakulti : Sains dan Teknologi Makanan

Tiga kartrij pengestrakan fasa pepejal (SPE), berasaskan penukaran anion dan interaksi tak-berkutub, telah dibangunkan dan dinilai sebagai turus pencucian sebelum analisis racun perosak organoklorin dan piretroid di dalam sampel buah-buahan dan sayuran. Tanpa kaedah pencucian, matrik di dalam buahan dan sayuran memberi kesan kepada analisis racun perosak organoklorin dan piretroid. Objektif kajian ini adalah untuk membandingkan keberkesanan di antara turus-turus pencucian SAX/PSA, Florisil dan C18 SPE untuk menghapuskan gangguan matrik dari anggur, oren, tomato, lobak merah dan sawi dalam penentuan racun perosak organoklorin (gamma-HCH, heptaklor, aldrin, dieldrin, endrin, captafol) dan pireteroid (pimetrin, cipermetrin, fenvaleret) menggunakan kromatografi gas dengan pengesan penangkap elektron (GC-ECD).

Keputusan kajian menunjukkan bahawa SAX/PSA adalah paling berkesan sebagai turus pencucian berbanding dengan Florisil dan C18. Purata perolehan berada di antara 70-120% untuk semua sampel pada peringkat fortifikasi dari 0.01, 0.02 dan 0.1 mg/kg, kecuali captafol di bawah 70%. Walaupun Florisil tidak berkesan untuk memindahkan gangguan seperti SAX/PSA, tetapi purata pemulihan berada di antara 70 dan120% bagi semua sampel pada peringkat fortifikasi dari 0.01, 0.02 dan 0.1 mg/kg, kecuali captafol melebihi 120%. Namun begitu, turus C18 menunjukkan bahawa purata pemulihan bagi captafol berada di antara 70-120% bagi anggur pada peringkat fortifikasi 0.01, 0.02 dan 0.1 mg/kg. Walaubagaimanapun, turus C18 juga memberikan keputusan dalam julat yang tidak diterima bagi purata perolehan untuk heptaklor, aldrin dan pimetrin dari anggur pada semua tahap fortifikasi dan pimetrin dari oren pada 0.01 dan 0.02 mg/kg peringkat fortifikasi.

Ekstraksi SPE menghasilkan kromatogram yang lebih bersih membolehkan analisis menggunakan GC-ECD selepas pengekstrakan dengan etil acitet dengan had pengesanan (LOD) di antara 0.003 dan 0.015 mg/kg di dalam sampel anggur menggunakan turus pencuci SAX/PSA. Pengesahan oleh kromatografi gasspektrometri jisim (GC-MS) mampu untuk mengesan cipermetrin dalam tomato, daun ketumbar, daun sup, cili, terung, kacang buncis, sawi dan cili besar daripada penentuan ke atas sejumlah 508 sampel yang diperolehi daripada pasaran di Malaysia. Hanya nilai purata bagi cipermetrin dalam terung didapati melebihi tahap yang dibenarkan mengikut Peraturan-peraturan Makanan Malaysia, 1985.

ACKNOWLEDGEMENTS

In the name of Allah, Most gracious, Most merciful, Alhamdulillah, with his blessing, I have completed the preparation of this manuscript.

I would like to express my deepest gratitude and respect to my kind supervisor, Professor Dr. Yaakob bin Che Man for his understanding, guidance, encouragement, and support throughout my study. I also would like to extend my appreciation and gratitude to the members of the advisory committee Dr. Nazimah Sheikh Abdul Hamid and Mr. Chin Cheow Keat for their invaluable contributions and support.

I will be always indebted to the Public Service Department for the scholarship and funding of my study. Paramount gratitude is also extended to the staff of National Public Health Laboratory, Ministry of Health Malaysia, especially Pesticide Residue Unit and Faculty of Food Science and Technology, Universiti Putra Malaysia who contribute one way or another towards the completion of my study.

Last but not least, I would like to express my sincere gratitude to my beloved family for their support, advice and encouragement and also to my friends especially Tosiah, Tuan Zainazor, Nor Azizah, Siti Habsah, Mazlan, Hamanyza, Zailina, Nor Azlina, Nor Haizan, Shahariza, Marina, Aida, Ahmad Nizam, Rozila and Yuli Haryani for their kindness, friendship and corporation to complete my study.

I certify that an Examination Committee has met on 4 August 2006 to conduct the final examination of Zawiyah Sharif on her Master of Science thesis "Effectiveness of Three Solid Phase Extraction Adsorbents for Sample Clean-up Prior to Gas Chromatography Analysis of Organochlorine and Pyrethroid Pesticides in Fruits and Vegetables" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Jinab Selamat, PhD

Professor Faculty Food Science and Technology Universiti Putra Malaysia (Chairman)

Md. Jelas Haron, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Md. Nordin Hj. Lajis, PhD

Professor Institute of Bioscience Universiti Putra Malaysia (Internal Examiner)

Bahruddin Saad

Professor School of Chemical Science Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 NOVEMBER 2006

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirements for the degree of Master of Science. The members of the Supervisory Committee are as follow:

Yaakob Che Man, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Nazimah Sheikh Abdul Hamid, PhD

Lecturer Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Chin Cheow Keat

Food Safety and Quality Division Ministry of Health Malaysia (Member)

> AINI IDERIS, PhD Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date: 14 DECEMBER 2006

DECLARATION

I hereby declare that the thesis based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

ZAWIYAH SHARIF

Date: 2 OCTOBER 2006

xi

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxii

CHAPTER

1	GEN	IERAL INTRODUCTION	1
2	LITI	ERATURE REVIEW	6
	2.1	Pesticides	6
	2.2	Determination of Pesticides Residues	7
	2.3	The Use of Pesticides	8
	2.4	Regulatory and Legislation	10
	2.5	Monitoring and Surveillance Programmes	15
	2.6	Risk to Human Health	17
	2.7	Organochlorine Pesticides	18
		2.7.1 Gamma-Hexachlorocyclohexane (Gamma-HCH)	20
		2.7.2 Heptachlor	21
		2.7.3 Aldrin	22
		2.7.4 Dieldrin	23
		2.7.5 Endrin	24
		2.7.6 Captafol	25
	2.8	Pyrethroid Pesticides	25
		2.8.1 Permethrin	27
		2.8.2 Cypermethrin	28
		2.8.3 Fenvalerate	29
	2.9	Solid Phase Extraction	30
		2.9.1 Advantages of SPE	34
		2.9.2 Types of the SPE Clean-up Column	35

	2.10		od of Analysis Organia Salvant		40 41
			Organic Solvent		41 44
			Gas Chromatography		44 49
		2.10.3	Recovery Rate		49
3	MAT	ERIAL	S AND METHODS		50
Samples				50	
		-	son of Clean-up Columns	50	
Determin	ation of	Pestici	de Residues in Fruits		
			and Vegetables		51
Reagents				52	
Solid Pha				52	
Sample F				5.	
Optimiza	tion of t	the Metl	nod	5.	
Analytica	l Proce	dure		54	4
			etermination	54	
Gas Chro	matogra	aphic-M	lass Spectrometry (GC-MS)		
		Confi	rmation		55
Statistical	l Analys	sis		5	7
4	DECI	п тс л	ND DISCUSSION		
4	4.1		ty of Elution Solvent		58
	4.1		5	Column	59 59
	4.2 4.3		very Rate without Clean-up (63
	4.3		ffects of SAX/PSA Clean-uj Pesticide Extraction without		
					66
		4.3.2 4.3.3	1 1		69
			e	-	09 72
		4.3.4		-	
		4.3.5	1		74
	4.4	4.3.6		1	77
	4.4		ffects of Florisil Clean-up C Pesticide Extraction without		81
		4.4.2	Evaluation on Grape Samp		83
		4.4.3	Evaluation on Orange Sam	-	87
		4.4.4	Evaluation on Tomato San	1	90
		4.4.5	Evaluation on Carrot Samp		93
	4 5	4.4.6	Evaluation on Green Must	-	
	4.5		ffects of C18 Clean-up Colu		. 98
		4.5.1	Pesticide Extraction without		
		4.5.2	Evaluation on Grape Samp		101
		4.5.3	Evaluation on Orange Sam	-	103
		4.5.4	Evaluation on Tomato San	1	106
		4.5.5	1		109
		4.5.6	Evaluation on Green Must	ard Samples	112

4.6	Comparison of the Clean-up Columns	115
	4.6.1 Recovery Rate and Standard Deviation	115
	4.6.2 Clean-up Columns Efficiency	117
	4.6.3 Statistical Analysis of Mean Recoveries	119
4.7	Determination of Pesticide Residues in Fruits and	
	Vegetables using SAX/PSA Clean-up Column	122
	4.7.1 Confirmation of Pesticides	123
	4.7.2 Limit of Detection and Limit of Quantification	123
	4.7.3 Determination of Organochlorine and Pyrethroid	
	Pesticides	124
OEN		120
	ERAL CONCLUSIONS AND RECOMMENDATIONS	129
5.1	Conclusions	129
5.2	Recommendations	131
BIBI	LIOGRAPHY	133
BIO	DATA OF THE AUTHOR	145
LIST	COF PUBLICATIONS	146

5

LIST OF TABLES

Table		Page
2.1	Data on Trade Statistic of Import Value of Orange to Malaysia	12
2.2	Data on Trade Statistic of Import Value of Tomato to Malaysia	13
2.3	Data on Trade Statistic of Import Value of Carrot to Malaysia	14
2.4	Monitoring and Surveillance Programmes Carried out on Pesticides	16
2.5	SPE Clean-up Columns Used in Pesticide Analysis	33
2.6	The Use of GC-ECD	46
3.1	The retention time, molecular weight and fragment ions selected for confirmation of pesticides using GC-MS	56
4.1	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides without any clean-up column fortified at 0.01 mg/kg (n=3)	60
4.2	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides without any clean-up column fortified at 0.02 mg/kg (n=3)	61
4.3	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides without any clean-up column fortified at 0.1 mg/kg (n=3)	62
4.4	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides in the absence of food matrix after clean-up with SAX/PSA column (n=3)	65
4.5	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from grape samples using SAX/PSA clean-up column (n=3)	68
4.6	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from orange samples using SAX/PSA clean-up column (n=3)	71
4.7	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from tomato samples	

	using SAX/PSA clean-up column (n=3)	74
4.8	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from carrot samples using SAX/PSA clean-up column (n=3)	77
4.9	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from green mustard samples using SAX/PSA clean-up column (n=3)	80
4.10	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides without any food matrix using Florisil column (n=3)	83
4.11	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from grape samples using Florisil column (n=3)	86
4.12	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from orange samples using Florisil column (n=3)	89
4.13	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from tomato samples using Florisil column (n=3)	92
4.14	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from carrot samples using Florisil column (n=3)	95
4.15	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from green mustard samples using Florisil column (n=3)	97
4.16	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides in the absence of food matrix after clean-up with C18 column (n=3)	100
4.17	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from grape samples using C18 clean-up column (n=3)	103
4.18	Mean recoveries (Rec.) and standard deviations (SD) of 6	

organochlorine and 3 pyrethroid pesticides from orange samples

	using C18 clean-up column (n=3)	105
4.19	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from tomato samples using C18 clean-up column (n=3)	108
4.20	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from carrot samples using C18 clean-up column (n=3)	111
4.21	Mean recoveries (Rec.) and standard deviations (SD) of 6 organochlorine and 3 pyrethroid pesticides from green mustard samples using C18 clean-up column (n=3)	114
4.22	Mean recoveries of pesticides for grape, orange, tomato, carrot and green mustard fortified at 0.01 mg/kg using SAX/PSA, Florisil and C18 clean-up columns	120
4.23	Mean recoveries of pesticides for grape, orange, tomato, carrot and green mustard fortified at 0.02 mg/kg using SAX/PSA, Florisil and C18 clean-up columns	121
4.24	Mean recoveries of pesticides for grape, orange, tomato, carrot and green mustard fortified at 0.1 mg/kg using SAX/PSA, Florisil and C18 clean-up columns	122
4.25	The retention time, LOD and LOQ in mg/kg of grape sample	124
4.26	Number of fruit and vegetable samples analysed and number of samples with pesticide residue detected	125
4.27	The mean levels of six organochlorine and three pyrethroid pesticides in vegetable and fruit samples in Sungai Buloh and Selayang are (Malaysia)	127
4.28	The levels of cypermethrin detected in vegetable samples	128

LIST OF FIGURES

Figur	e		Page
2.1	Chem	ical Structure of Gamma-HCH	20
2.2	Chem	ical Structure of Heptachlor	21
2.3	Chem	ical Structure of Aldrin	22
2.4	Chem	ical Structure of Dieldrin	23
2.5	Chem	ical Structure of Endrin	24
2.6	Chem	ical Structure of Captafol	25
2.7	Chem	ical Structure of Permethrin	27
2.8	Chem	ical Structure of Cypermethrin	28
2.9	Chem	ical Structure of Fenvalate	29
2.10	Chem	ical Structure of PSA	36
2.11	Chem	ical Structure of SAX	37
2.12	Chem	ical Structure of C18	39
2.13	Polari	ty of Solvent	43
2.14	GC D	etectors Sensitivities and Ranges	45
4.1	(A) (B)	GC-ECD chromatogram for mixed standard solution at concentration of 0.5 mg/L in the absence of food matrix before SAX/PSA clean-up GC-ECD chromatogram for mixed standard solution at concentration of 0.5 mg/L in the absence of food matrix after SAX/PSA clean-up	64 64
4.2	(A) (B)	GC-ECD chromatogram of grape sample before SAX/PSA clean-up fortified with 0.02 mg/kg of mixed standard solutions GC-ECD chromatogram of grape sample after SAX/PSA clean-up fortified with 0.02 mg/kg of mixed standard solutions	67 67
4.3	(A)	GC-ECD chromatogram of orange sample before SAX/PSA	

	(B)	clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of orange sample after SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions	70 70
4.4	(A) (B)	GC-ECD chromatogram of tomato sample before SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of tomato sample after SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions	73 73
4.5	(A) (B)	GC-ECD chromatogram of carrot sample before SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of carrot sample after SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions	75 75
4.6	(A) (B)	GC-ECD chromatogram of green mustard sample before SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of green mustard sample after SAX/PSA clean-up fortified at 0.1 mg/kg of mixed standard solutions	79 79
4.7	(A) (B)	GC-ECD chromatogram for mixed standard solution at concentration of 0.5 mg/L in the absence of food matrix before Florisil clean-up GC-ECD chromatogram for mixed standard solution at concentration of 0.5 mg/L in the absence of food matrix after Florisil clean-up	82 82
4.8	(A) (B)	GC-ECD chromatogram of grape sample before Florisil clean-up fortified at 0.02 mg/kg of mixed standard solutions GC-ECD chromatogram of grape sample after Florisil clean-up fortified at 0.02 mg/kg of mixed standard solutions	84 84
4.9	(A) (B)	GC-ECD chromatogram of orange sample before Florisil clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of orange sample after Florisil clean-up fortified at 0.1 mg/kg of mixed standard solutions	88 88
4.10	(A) (B)	GC-ECD chromatogram of tomato sample before Florisil clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of tomato sample after Florisil clean-up fortified at 0.1 mg/kg of mixed standard solutions	91 91
4.11	(A)	GC-ECD chromatogram of carrot sample before Florisil clean-up fortified at 0.1 mg/kg of mixed standard solutions	94

	(B)	GC-ECD chromatogram of carrot sample after Florisil clean-up fortified at 0.1 mg/kg of mixed standard solutions	94
4.12	(A)	GC-ECD chromatogram of green mustard sample before Florisil	07
	(B)	clean-up fortified at 0.1 mg/kg of mixed standard solutions GC-ECD chromatogram of green mustard sample after Florisil	96
		clean-up fortified at 0.1 mg/kg of mixed standard solutions	96
4.13	(A)	GC-ECD chromatogram for mixed standard solution at concentration 0.5 mg/L in the absence of food matrix before	
	(B)	C18 clean-up GC-ECD chromatogram for mixed standard solution at	99
		concentration 0.5 mg/L in the absence of food matrix after C18 clean-up	99
4.14	(A)	GC-ECD chromatogram of grape sample before C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	102
	(B)	GC-ECD chromatogram of grape sample after C18 clean-up	
		fortified at 0.1 mg/kg of mixed standard solutions	102
4.15	(A)	GC-ECD chromatogram of orange sample before C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	104
	(B)	GC-ECD chromatogram of orange sample after C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	104
4.16	(A)	GC-ECD chromatogram of tomato sample before C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	107
	(B)	GC-ECD chromatogram of tomato sample after C18 clean-up	107
		fortified at 0.1 mg/kg of mixed standard solutions	107
4.17	(A)	GC-ECD chromatogram of carrot sample before C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	110
	(B)	GC-ECD chromatogram of carrot sample after C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	110
4.18	(A)	GC-ECD chromatogram of green mustard sample before C18 clean-up fortified at 0.1 mg/kg of mixed standard solutions	113
	(B)	GC-ECD chromatogram of green mustard sample after C18	
		clean-up fortified at 0.1 mg/kg of mixed standard solutions	113
4.19	(A)	GC-ECD chromatogram of orange extracts after clean-up with SAX/PSA column	118
	(B)	GC-ECD chromatogram of orange extracts after clean-up with Florisil column	118

	(C)	GC-ECD chromatogram of orange extracts after clean-up with C18 column	118
4.19		IS chromatogram for cypermethrin standard with total ion natogram	125

LIST OF ABBREVIATIONS

AED	Atomic Emission Detector
ECD	Electron Capture Detector
EU	European Union
FAO	Food and Agriculture Organization
FPD	Flame Photometric Detector
FTD	Flame Thermionic Detector
FTIR	Flourier Transform Spectrophotometer Infra-Red
	Spectrophotometer
GC	Gas Chromatography
GCB	Graphitized Carbon Black
GC-MS	Gas Chromatography-Mass Spectrometry
GC-MS HPLC	Gas Chromatography-Mass Spectrometry High Pressure Liquid Chromatography
HPLC	High Pressure Liquid Chromatography
HPLC IST	High Pressure Liquid Chromatography International Sorbent Technology
HPLC IST MRL	High Pressure Liquid Chromatography International Sorbent Technology Maximum Residue Limit
HPLC IST MRL MS	High Pressure Liquid Chromatography International Sorbent Technology Maximum Residue Limit Mass Spectrometry
HPLC IST MRL MS NPD	High Pressure Liquid Chromatography International Sorbent Technology Maximum Residue Limit Mass Spectrometry Nitrogen Phophorus Detector
HPLC IST MRL MS NPD PSA	High Pressure Liquid Chromatography International Sorbent Technology Maximum Residue Limit Mass Spectrometry Nitrogen Phophorus Detector Primary Secondary Amine

SPE	Solid Phase Extraction
TCD	Thermal Conductivity Detector
ULV	Ultra-Low-Volume
USA	United State of America
UV	Ultra Violet

LIST OF SYMBOLS AND UNITS

g	Gram
mL	Milliliter
min	Minute
mg	Milligram
α	Alpha
β	Beta
%	Percent
°C	Degree celcius
μL	Microliter
mm	Millimeter
m	Meter
μm	Micrometer
°C/min	Degree Celcius per minute
mL/min	Milliliter per minute
mg/L	Milligram per liter

v/v	Volume per volume
g/mL	Gram per milliliter
g/L	Gram per liter
mg/mL	Milligram per milliliter
mg/kg	Milligram per kilogram
meq/g	Milliequivalent per gram

