

UNIVERSITI PUTRA MALAYSIA

CRASH SIMULATION OF A COMPOSITE UNMANNED AERIAL VEHICLE FUSELAGE

NOORFAIZAL BIN DATO' HJ. YIDRIS

FK 2007 47

CRASH SIMULATION OF A COMPOSITE UNMANNED AERIAL VEHICLE FUSELAGE

By

NOORFAIZAL BIN DATO' HJ. YIDRIS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master Science

July 2007

CRASH SIMULATION OF A COMPOSITE UNMANNED AERIAL VEHICLE FUSELAGE

NOORFAIZAL BIN DATO' HJ. YIDRIS

MASTER OF SCIENCE

UNIVERSITI PUTRA MALAYSIA

2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirements for the degree of Master Science

CRASH SIMULATION OF A COMPOSITE UNMANNED AERIAL VEHICLE FUSELAGE

By

NOORFAIZAL BIN DATO' HAJI YIDRIS

July 2007

Chairman: Ahmad Samsuri Mokhtar, PhD

Faculty: Engineering

In this research the results of experimental works and numerical simulation works pertaining to the crash behavior and crashworthiness characteristic of the upper part of the composite unmanned aerial vehicle (UAV) fuselage sections that were subjected to quasi-static transverse compressive loading are presented in detail. The influence of varying angles of lamina and special cases of laminates is thoroughly analyzed. The fuselage sections were made of 8 plies of C-glass/epoxy in a [45/-45/90/0]_s layup. Two types of density of C-glass/epoxy, 200 g/m² and 600 g/m², were used with a total thickness of 0.00224 m and 0.004 m respectively for the 8-plies. Each ply has a thickness of 0.0028 m for C-glass/epoxy 200 g/m² and 0.0005 m for C-glass/epoxy 600 g/m². The C-glass/epoxy fuselage section was compressed using MTS machine of 250 kN loading capacity at very low-strain rate typical for static testing. The experimental data are correlated with predictions from a finite

element model developed using the ABAQUS/Standard with user subroutine. The simulation of the composite fuselage sections was carried out, refined several times and validated with the experimental results. The ABAQUS analysis results for both the C-glass/epoxy 200 g/m² and C-glass/epoxy 600 g/m² fuselage sections agreed well with the experimental data. ABAQUS analyses predicted the location of progressive damage to the sections using three failure theories, Maximum Stress Failure Theory, Tsai-Hill Failure Theory and Tsai-Wu Failure Theory. Tsai-Hill Failure Theory is found to have the least error percentage compared to the other two failure theories used. Finally, the finite element model was then used to study the influence of varying angles of lamina and special cases of laminates. 15° angle of lamina and cross-ply laminate is found to have the most energy absorption.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIMULASI HENTAMAN BADAN PESAWAT TANPA PEMANDU BERKOMPOSIT

Oleh

NOORFAIZAL BIN DATO' HAJI YIDRIS

Julai 2007

Pengerusi: Ahmad Samsuri Mokhtar, PhD

Fakulti: Kejuruteraan

Hasil-hasil penemuan dari kerja-kerja ujikaji dan simulasi berangka berkenaan dengan kelakuan hempasan dan sifat-sifat kebolehtahanan-hempasan bagi bahagian atas seksyen badan pesawat tanpa pemandu akibat daya mampatan disampaikan dengan terperinci. Pengaruh sudut lamina yang berbeza dan kumpulan lamina yang tertentu dianalisis dengan teliti. Seksyen badan pesawat dibuat daripada 8 lapisan C-glass/epoxy mengikut sudut lapisan [45/-45/90/0]_s. Dua jenis ketumpatan digunakan iaitu 200 g/m² and 600 g/m² dan masing-masing mempunyai ketebalan keseluruhan bagi 8 lapisan, 0.00224 m dan 0.004 m. Setiap lapisan berketebalan 0.00028 m untuk C-glass/epoxy 200 g/m² dan 0.0005 m untuk C-glass/epoxy 600 g/m². Seksyen badan pesawat dikenakan daya mampatan pada kadar terikan yang perlahan tipikal untuk ujikaji statik menggunakan mesin MTS berkeupayaan 250 kN. Data-data ujikaji dihubungkaitkan dengan data-data jangkaan dari model unsur terhingga yang

dibangunkan menggunakan program ABAQUS/Standard. Simulasi seksyen badan pesawat berkomposit dijalankan, diperhalusi beberapa kali dan disahkan dengan data-data ujikaji. Data-data analisis program ABAQUS bagi kedua-dua jenis ketumpatan badan pesawat serupa dengan data-data ujikaji. Analisa program ABAQUS berjaya meramalkan kedudukan kerosakan-kerosakan ke atas seksyen badan pesawat menggunakan tiga teori kegagalan, Teori Kegagalan Tegasan Maksimum, Teori Kegagalan Tsai-Hill dan Teori Kegagalan Tsai-Wu. Teori Kegagalan Tsai-Hill didapati mendapat peratus kesilapan yang paling rendah berbanding dengan dua teori kegagalan yang lain. Model unsur terhingga tersebut digunakan untuk mengkaji pengaruh sudut lamina yang berbeza dan kumpulan lamina yang tertentu. Sudut lamina 15° dan lapisan lamina bersilang didapati mempunyai tenaga penyerapan hempasan yang tinggi.

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Dr. Elsadig Mahdi Ahmed Saad for his encouragement, valuable advice, and guidance through my years as a master student. It is a pleasure and an honour to be his student.

I would like also to express my sincere gratitude and deep thanks to my committee member, Dr. Ahmad Samsuri Mokhtar for his kind assistance, advice, encouragement, and suggestions throughout this work and during the preparation of this thesis. I would like to thanks to Dr. Rizal Zahari, En. Ropie Mat and all who have helped in the process of this work.

I certify that an Examination Committee met on July 16, 2007 to conduct the final examination of Noorfaizal Bin Dato' Hj. Yidris on his master of science thesis entitled "Crash Simulation of a Composite Unmanned Aerial Vehicle Fuselage" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Mohd Ramly Bin Ajir, MSc

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Abd. Rahim Abu Talib, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal examiner)

Faizal Mustapha, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Ahmad Kamal Ariffin Mohd Ihsan, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Ahmad Samsuri Mokhtar, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Rizal Zahari, PhD

Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Elsadig Mahdi Ahmed, PhD Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NOORFAIZAL BIN DATO' HAJI YIDRIS

Date: 20 AUGUST 2007

LIST OF TABLES

Table		Page
3.1	Maximum deflection of frame A and frame B	41
4.1	Geometrical data; width and gage length for C-glass/Epoxy 200 g/m^2	71
4.2	Geometrical data; thickness and area for C-glass/Epoxy 200 g/m^2	71
4.3	Geometrical data; width and gage length for C-glass/Epoxy 600 g/m^2	83
4.4	Geometrical data; thickness and area for C-glass/Epoxy 600 g/m^2	83
4.5	Summary of mechanical properties for C-glass/epoxy 200 $\mbox{g/m}^2$ and 600 $\mbox{g/m}^2$	94
5.1	Dependence of the elastic material properties on the field variables	110
6.1	Measured crashworthiness parameters for C-glass/epoxy 200 g/m^2	121
6.2	Measured crashworthiness parameters for C-glass/epoxy 600 g/m^2	125
6.3	Special cases of laminates	131

LIST OF FIGURES

Figure		Page
1.1	Components of the innovative fuselage concept	5
1.2	Structural stiffness test	6
1.3	Internal pressure test	7
1.4	Fuselage arrangements prior to the 0° –roll (a) and 15° –roll (b) drop tests	7
1.5	Post-drop test photograph at 15° –roll	8
1.6	Fuselage section geometry	10
2.1	Modes of failure for cylinders: (a) tube inversion, (b) progressive crushing, (c) axisymmetric buckling and (d) diamond-shape buckling	25
3.1	Impact load on a fuselage section due to a falling mass M	29
3.2	Static load-displacement diagram	30
3.3	Load-Displacement Diagram of various typical compression types	31
3.4	Some of the crashworthiness parameters	32
3.5	Flow chart of the overall research methodology	33
3.6	Flow chart of the overall experimental work	34
3.7	Holding jig with mandrel diagram	35
3.8	Holding jig model	36
3.9	Beam with loads diagram	37
3.10	Beam cross-section dimension	37
3.11	Shear and bending moment diagram	38
3.12	Frame A and Frame B with loadings	40
3.13	Frame cross-section dimension	41
3.14	The holding jig	42

3.15	The mandrel and the aluminum outer cover	43
3.16	Dimension of the fuselage section	43
3.17	The lathe machine	44
3.18	The milling machine	44
3.19	The G-clamp used to hold the aluminum sheet in shaped	45
3.20	Schematic drawing of the fuselage construction process	46
3.21	C-glass woven fabric of type 200 g/m ² and 600 g/m ²	46
3.22	C-glass woven fabric cloth	47
3.23	The mandrel positioned on the holding jig	48
3.24	C-glass/epoxy cloth wrapped around the mandrel	49
3.25	The cured composite fuselage section of type 200 $\mbox{g/m}^2$ and 600 $\mbox{g/m}^2$	49
3.26	Quasi-static testing using MTS machine	50
3.27	Apparatus needed to prepare the rectangular coupon specimen	51
3.28	Strain gages and strain gage cement	52
3.29	Coupon specimens for tensile testing	53
3.30	Instron UTM machine for tensile testing	54
3.31	Typical geometry of a tensile strength specimen	54
3.32	Specimen with the mounted longitudinal and transverse strain gages	55
3.33	Specimen in the grip of UTM machine	56
3.34	Wheatstone bridge box and strain amplifier equipment	57
3.35	Data acquisition card	57
3.36	Coupon specimen for finding the transverse tensile property	58
3.37	Schematic of a $[45/-45]_{2s}$ laminate shear test	59
4.1	Deformation photos of specimen A	61

4.2	Crushing load-displacement curve for specimen A	61
4.3	Deformation photos of specimen B	62
4.4	Crushing load-displacement curve for specimen B	62
4.5	Load-displacement diagram for C-glass/epoxy 200 g/m^2 specimens	65
4.6	Energy absorbed vs. displacement diagram for C-glass/epoxy 200 g/m^2 specimens	65
4.7	Deformation photos of specimen S61	67
4.8	Crushing load-displacement curve for specimen S61	67
4.9	Deformation photos of specimen S62	68
4.10	Crushing load-displacement curve for specimen S62	68
4.11	Load-displacement diagram for C-glass/epoxy 600 g/m^2 specimens	70
4.12	Energy-displacement diagram for C-glass/epoxy 600 g/m^2 specimens	70
4.13	Load-displacement curve for $[0]_8$ laminate under a longitudinal tensile load	72
4.14	Stress-strain curve for $[0]_8$ laminate under a longitudinal tensile load	73
4.15	Reduced stress-strain curve for $[0]_8$ laminate under a longitudinal tensile load	74
4.16	Load-displacement curve for [90] ₈ laminate under a transverse tensile load	75
4.17	Stress-strain curve for $[90]_8$ laminate under a transverse tensile load	76
4.18	Reduced stress-strain curve for $[90]_8$ laminate under a transverse tensile load	77
4.19	Shear stress-displacement curve for $[\pm 45]_{2S}$ laminate under a longitudinal tensile load	79
4.20	Reduced stress-strain curve for $[\pm 45]_{2S}$ laminate under a longitudinal tensile load	80

4.21	Strain-load curve for S2904 $[0]_8$ laminate under a longitudinal tensile load	81
4.22	Strain-load curve for S2905 $[0]_8$ laminate under a longitudinal tensile load	82
4.23	Load-displacement curve for [0] ₈ laminate under a longitudinal tensile load	84
4.24	Stress-strain curve for $[0]_8$ laminate under a longitudinal tensile load	85
4.25	Reduced stress-strain curve for $[0]_8$ laminate under a longitudinal tensile load	86
4.26	Load-displacement curve for [90] ₈ laminate under a transverse tensile load	87
4.27	Stress-strain curve for [90] ₈ laminate under a transverse tensile load	88
4.28	Reduced stress-strain curve for [90] ₈ laminate under a transverse tensile load	89
4.29	Shear stress-displacement curves for $[\pm 45]_{2S}$ laminate under a longitudinal tensile load	90
4.30	Reduced stress-strain curves for $[\pm 45]_{2S}$ laminate under a longitudinal tensile load	91
4.31	Strain-load curves for S602 a $[0]_8$ laminate under a longitudinal tensile load	92
4.32	Strain-load curve for S606 a [0]8 laminate under a longitudinal tensile load	92
5.1	Component arrangement	96
5.2	Sketch of the deformable fuselage section	97
5.3	Sketch of the rigid moveable anvil and stationery anvil	99
5.4	Position of the rigid body reference point	99
5.5	Model assembly in Abaqus/Standard	102
6.1	Load-displacement diagram for C-glass/Epoxy 200 g/m ² (Maximum Stress Failure Theory)	113

6.2	Load-displacement diagram for C-glass/Epoxy 200 g/m ² (Tsai- Hill Failure Theory)	113
6.3	Load-displacement diagram for C-glass/Epoxy 200 g/m ² (Tsai-Wu Failure Theory)	114
6.4	Failure theories load-displacement diagram for C-glass/Epoxy 200 $\mbox{g/m}^2$	114
6.5	Load-displacement diagram for C-glass/Epoxy 600 g/m ² (Maximum Stress Failure Theory)	116
6.6	Load-displacement diagram for C-glass/Epoxy 600 g/m ² (Tsai-Hill Failure Theory)	117
6.7	Load-displacement diagram for C-glass/Epoxy 600 g/m ² (Tsai-Wu Failure Theory)	117
6.8	Failure theories load-displacement diagram for C-glass/Epoxy 600 g/m^2	118
6.9	Experiment and Abaqus load-displacement diagram for C-glass/Epoxy 200 $\mbox{g/m}^2$	119
6.10	Bar chart of experiment and Abaqus peak load achieved for C-glass/Epoxy 200 $\mathrm{g/m}^2$	120
6.11	Experiment and Abaqus energy-displacement diagram for C-glass/Epoxy 200 g/m^2	121
6.12	Bar chart of experiment and Abaqus total energy absorbs for C-glass/Epoxy 200 g/m 2	122
6.13	Experiment and Abaqus load-displacement diagram for C-glass/Epoxy 600 $\mathrm{g/m}^2$	123
6.14	Bar chart of the experiment and Abaqus peak load achieved for C-glass/Epoxy 600 g/m^2	124
6.15	Experiment and Abaqus energy-displacement diagram for C-glass/Epoxy 600 g/m^2	125
6.16	Bar chart of experiment and Abaqus total energy absorbs for C-glass/Epoxy 600 g/m^2	126
6.17	Applied load as a function of angle of lamina using Tsai-Hill failure theory	128
6.18	Peak load as a function of angle of lamina using Tsai-Hill failure theory	128
	X V111	

6.19	Energy absorbs as a function of angle of lamina using Tsai- Hill failure theory	129
6.20	Total energy absorbs at 40 mm and 100 mm displacement as a function of angle of lamina using Tsai-Hill failure theory	130
6.21	Applied load as a function of special laminates using Tsai-Hill failure theory	132
6.22	Peak load as a function of special laminates using Tsai-Hill failure theory	133
6.23	Energy absorbs as a function of special laminates using Tsai- Hill failure theory	134
6.24	Total energy absorbs at 40 mm and 100 mm displacement as a function of special laminates using Tsai-Hill failure theory	135

LIST OF ABBREVIATIONS

[A]	Extensional compliance matrix
[B]	Coupling compliance matrix
[D]	Bending compliance matrix
М	Mass (kg)
g	Gravity acceleration (m.s ⁻²)
h	Height between the mass M and top of fuselage section (m)
V	Velocity of the mass M (m.s ⁻¹)
Δ_{max}	Maximum displacement after deformation (m)
Mgh	Potential energy (J)
$Mv^2/2$	Kinetic energy (J)
P _{max}	Peak load (N)
E _{abs}	Absorbed crash energy (J)
Es	Specific absorbed energy (J.kg ⁻¹)
P _{avg}	Average crushing load (N)
CFE	Crush load efficiency
SE	Stroke efficiency of use ratio
D	Mean diameter (m)
L	Axial length (m)
t	Wall thickness (m)
E_{11}	Young's modulus in longitudinal direction (Pa)
E_{22}	Young's modulus in transverse direction (Pa)
G_{12}	In-plane shear modulus (Pa)
<i>v</i> ₁₂	In-plane Poisson's ratio

S_{11}	Tensile strength in longitudinal direction (Pa)
<i>S</i> ₂₂	Tensile strength in transverse direction (Pa)
S_{12}	In-plane shear strength (Pa)
M _{max}	Maximum bending moment (N.m)
V _{max}	Maximum Shear (N.m ⁻²)
$S_{req'd}$	Required section modulus (m ³)
$\sigma_{\rm allow}$	Allowable stress (N.m ⁻²)
Ι	Moment of Inertia (m ⁴)
с	Radius of the beam section (m)
$ au_{avg}$	Average shear stress (Pa)
А	Area (m ²)
R_A, R_B	Reaction forces (N)
W	Width (m)
ϵ_x, ϵ_y	Axial strain (m.m ⁻¹)
Y 12	Shear strain (rad)
τ_{12}	Shear stress (Pa)
$\sigma_{\rm x}$	Axial stress (Pa)

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
AKNOWLEDGEMENT	vi
APPROVAL	vii
DECLARATION	ix
TABLE OF CONTENTS	Х
LIST OF TABLES	xiii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	XX

CHAPTER

1

2

INTRODUC	TION	
1.1 Research	Background	1
1.2 Problem S	Statement	8
1.3 Research	Hypothesis	10
1.4 Research	Objectives	11
1.5 Scopes of	Work	11
1.6 Significar	nce of the study	12
1.7 Thesis Or	ganization	12
LITERATU	RE REVIEW	
2.1 UAV Mat	terials and Components	13
2.2 Fuselage	Structures	15
2.3 Mechanic	s of Composite Materials	16
2.4 Energy A	bsorbing Structures	22
2.4.1	Factors Affecting the Energy Absorption Capability	
	of Composite Materials	22
2.4.2	Failure Mechanisms of Composite Materials	25
2.4.3	Predictive Techniques	26
2.5 Conclusio	on -	27

2.5 Conclusion

3 EXPERIMENTAL SET-UP

3.1 Introduction	28
3.2 Crashworthiness Characteristic	30
3.3 Experimental Work	32
3.3.1 Holding Jig Fabrication	34
3.3.2 Mandrel Fabrication	42
3.3.3 Specimen Preparation	45
3.3.4 Quasi-Static Crushing Test	50
3.4 Material Characterization Procedure	50
3.4.1 Apparatus and Specimen Preparation	51
3.4.2 Longitudinal Tensile Strength	53
3.4.3 Transverse Tensile Strength	58
3.4.4 In-Plane Shear Strength	58
3.5 Conclusion	59

Page

4

7

EXPERIMENTAL RESULTS AND DISCUSSIONS

4.1 Composite Fuselage Section of Type C-Glass/Epoxy 200 g/m ²	60
4.2 Composite Fuselage Section of Type C-Glass/Epoxy 600 g/m^2	66
4.3 Material Characterization of Type C-Glass/Epoxy 200 g/m ²	71
4.3.1 Modulus of Elasticity, E_{11}	72
4.3.2 Modulus of Elasticity, E_{22}	75
4.3.3 Shear Modulus, G_{12}	78
4.3.4 Poisson's Ratio, v_{12}	81
4.4 Material Characterization of Type C-Glass/Epoxy 600 g/m ²	83
4.4.1 Modulus of Elasticity, E_{11}	84
4.4.2 Modulus of Elasticity, E ₂₂	86
4.4.3 Shear Modulus, G_{12}	89
4.4.4 Poisson's Ratio, v_{12}	91
4.5 Conclusion	93

5 FINITE ELEMENT MODELING PROCEDURE

5.1 Introduction	94
5.2 Problem Description	96
5.3 Pre-processing-Creating the Model with Abaqus/CAE	98
5.3.1 Part Definition	98
5.3.2 Material and Section Properties	100
5.3.3 Assembling the Parts	101
5.3.4 Defining Steps and Output Requests	103
5.3.5 Defining Contact Interactions	106
5.3.6 Defining Boundary Conditions	108
5.3.7 Mesh Creation and Job Definition	109
5.4 Editing Input File	110
5.5 Creating FORTRAN File	110
5.6 Conclusion	111

6 FINITE ELEMENT SIMULATIONS RESULTS AND DISCUSSION

6.1 Abaqus/Standard with User Subroutines Results for Fu	selage
Section (200 g/m^2)	112
6.2 Abaqus/Standard with User Subroutines Results for Fu	selage
Section (600 g/m^2)	115
6.3 Comparison of Experimental Results with Finite Eleme	ent
Analysis	118
6.3.1 Fuselage Section C-Glass/Epoxy 200 g/m ²	118
6.3.2 Fuselage Section C-Glass/Epoxy 600 g/m ²	122
6.4 Parametric Study	126
6.4.1 Angle of Orientation Effect	127
6.4.2 Special Cases of Laminates Effects	130
6.5 Conclusion	135
CONCLUSIONS AND RECOMMENDATION	
7 1 Conclusions	136

7.1 Conclusions1367.2 Recommendation137

REFERENCES	139
APPENDICES	146
BIODATA OF THE AUTHOR	161

CHAPTER 1

INTRODUCTION

This chapter describes the research background, problem statement, objectives, scopes of work of the research and the importance of the study to the engineering community in general and to unmanned aerial vehicle (UAV) researchers in particular.

1.1 Research Background

An unmanned aerial vehicle (UAV), which behaves same as an aircraft uses aerodynamic forces to provide lift. It does not carry a human to operate the vehicle but can be flied by an onboard computer and/or be piloted remotely. Some 48 countries currently own, some are planning, some are producing and some are acquiring UAV from foreign sources. In the U.S. alone, over 80 companies, universities, and government organizations are actively developing one or more of some 200 UAV designs. The U.S. military currently is operating some 2200 large and small UAV of over 20 types. Worldwide, there are an estimated 5000 UAV in use. Japan leads in commercial unmanned aircraft (UA) use, with some 2000 unmanned helicopters and 10,000 licensed operators working in the agricultural industry (Wong, 2001).

The advantages of having UAVs are many when compared to their manned counterparts. It is increasingly accepted that UAVs can fly over dangerous area and cost less to build and to operate. Pilot proficiency flying is eliminated or maintained on cheap semi-scale UAVs.

In general the purpose of an unmanned aerial vehicle is to carry out various operations for which the UAV is designed to accomplish such as scientific reconnaissance role, mapping, military survey, carrying weapons and lunching weapons, surveillance of borders and coasts, fire detection, search and rescue, etc. UAVs can generally be categorized as tactical, endurance, vertical takeoff and landing (VTOL), man portable, or hand-launched, optionally piloted vehicles (OPVs), micro air vehicles (MAVs), and research (the UAV equivalent of X-planes). (Rodrigo, 1999)

An article in Aviation Week & Space Technology in Jun 1998 reported that the range in price for UAVs is from \$1000 to \$26 million and the manned aircraft range in price from \$20,000 to \$500 million. Examples: The latest production version of the Air Force/Teledyne Ryan RQ-4/Global Hawk costs over \$26 million, not including its payload, the Air Force/General Atomics RQ-1/Predator \$3.3 million with payload, and the Navy/PUI RQ-2/Pioneer just over \$900,000 with payload. Tactical size UAVs are commercially available in the \$250,000 range with payload, the Aerosonde Robotic Aircraft's Atlantic-crossing Aerosonde runs \$35,000, and MLB offers mini (not micro) UAVs for around \$1000 per aircraft. The price of an UAV system can go up to two or ten times the price of its individual aircraft. The price of the UAV system includes its ground control station and shelter, launching

