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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment
of the requirement for the degree of Master of Science

STRUCTURAL OPTIMIZATION OF AN AEROELASTICALLY TAILORED
COMPOSITE WING

By

ABDOLHAMID ATTARAN

May 2007

Chairman: Professor ShahNor Bin Basri, PhD

Faculty:  Engineering

Effects of aspect ratio, sweep angle, and stacking sequence of laminated composites

were studied to find the optimized configuration of an aeroelastically tailored

composite wing idealized as a flat plate in terms of flutter speed. The aeroelastic

analysis has been carried out in frequency-domain. The modal approach in

conjunction with Doublet-lattice Method (DLM) has been opted for structural and

unsteady aerodynamic analysis, respectively. The interpolation between

aerodynamic boxes and structural nodes has been done using surface spline. To

study the effect of stacking sequence the classical lamination theory (CLT) has been

chosen. The parametric studies showed the effective ply orientation angle to be

somewhere between 15 and 30 degree, while the plates with lower aspect ratio seems

to have higher flutter speed. Forward-swept configurations show higher flutter speed,

yet imposed by divergence constraint.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk ijazah Master Sains

PENGOPTIMUMAN STRUKTUR BAGI KEAEROELASTIKAN SAYAP
KOMPOSIT BERTENUN

Oleh

ABDOLHAMID ATTARAN

Mei 2007

Pengerusi: Profesor ShahNor Bin Basri, PhD

Fakulti:  Kejuruteraan

Kesan daripada nisbah bidang, sudut sapuan, dan jujukan tindanan komposit berlapis

telah dikaji untuk mencari kongfigurasi optimum bagi sayap komposit terunggul

sebagai plat rata dalam sebutan halaju kibaran. Analisis keanjalan udara telah

dijalankan dalam julat frekuensi pendekatan ragaman telah dihubungran

dengan ”Doublet-Lattice Method” telah dipilih untuk struktur analisis aerodinamik

tidak mantap. Interpolasi antara kotak aerodinamik dan nod struktur telah dilakukan

menggunakan garisan permukaan. Untuk mengkaji kesan daripada turutan jujukan

tindanan, teori pelapisan klasik (Classical Lamination Theory – CLT) telah dipilih.

Kajian parameter menunjukkan keberkesanan sudut orientasi lapis berada diantara

15 dan 30 darjah manakala plat dengan nilai nisbah bidang rendah kelihatanyya

mempunyai halaju kibaran yang lebih tinggi. Kongfigurasi sapuan kehadapan

menunjukkan halaju kibaran lebih tinggi tetapi dikekang oleh kecapahan.
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CHAPTER 1

INTRODUCTION

1.1 Aeroelastic Phenomena

Aeroelasticity is the term used to denote the field of study concerned with the

interaction between the deformation of an elastic structure in an air stream and

resulting aerodynamic force [1]. Aeroelasticity phenomena can be well illustrated by

Collar's aeroelastic triangle (Figure 1.1). Generally, these phenomena can be divided

in two main groups [2]:

1) Static Aeroelastic phenomena which lies outside of the Collar's triangle,

created by Aerodynamic and Elastic forces.

2) Dynamic Aeroelastic phenomena within the triangle since they involve all

three types of forces (Aerodynamics, Elastic, and Inertial forces).

Static aeroelastic phenomena can be sorted out as “Load Distribution”, “Divergence”,

and “Control Surface Effectiveness/Reversal”, while dynamic aeroelastic phenomena

can be classified as “Dynamic Response”, “Limit Cycle Oscillations (LCO)”,

“Buffet”, “Flutter”.
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Figure 1.1: Collar's Triangle

1.2 Aeroelastic Flutter

The main focus in the present study would be on flutter, and divergence will be

treated as a special case of flutter when the reduced frequency will become zero.

Flutter is a self-excited oscillation, often destructive, wherein energy is absorbed

from the airstream [3]. This will produce a divergent response and it is usually

resulting of coupling of two or more structural modes: wing bending and torsion,

wing bending control surface hinge torsion, wing torsion fuselage bending,

horizontal or vertical tail and fuselage.

When a lifting surface that is statistically stable below its flutter speed is disturbed,

the oscillatory motions caused by those disturbances will die out in time with
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exponentially decreasing amplitudes. That is, one could say that the air is providing

damping for all such motions. Above the flutter speed, however, rather than damping

out the motions caused by small perturbations in the configurations, the air can be

said to be providing negative damping. Thus, those oscillatory motions grow with

exponentially increasing amplitudes [1].

Figure 1.2 demonstrates the three different cases of flutter when it is stable, neutral,

and unstable.

Figure 1.2: Different Cases of Flutter [4]
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1.3 Aeroelastic Tailoring Concepts

The destructive nature of flutter has always put a constraint for structural designers

to increase the flight envelope since the occurrence of flutter usually leads to

structural failure and loss of the vehicle. Meanwhile, there are some methods to put

off or even suppress such phenomena. Since aeroelasticity is a stiffness problem, one

obvious way is to make the airframe more rigid through utilization of high modulus

materials which consequently introduces unfavorable weight penalty in the gross

weight of the aircraft. However, one of the objectives in the process of aircraft

design is to reduce the overall weight; thus, this method of solution cannot be the

ultimate response to the demand of designing weight-critical vehicles such as aircraft

and spacecraft.

During the past few decades, structural designers have been seeking for alternative

materials to replace the conventional metallic structures where high stiffness is

required without increasing the weight. Therefore, they have come up with

composite materials which possess all of these criteria. In fact, the introduction of

composite materials into the realm of aircraft design has led to new airframe design

concepts and also to re-evaluation of older concepts [5]. Not only do composites

materials in general and laminated composites in particular offer weight advantage

over conventional metal airframe constructions, but also they provide this

opportunity to passively control the aeroelastic response of a lifting surface.

The technology to design for a desired aeroelastic response of a lifting surface using

advanced filamentary composite materials has been named aeroelastic tailoring [6].
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This is usually attainable by tailoring the fiber orientations of the composite

laminates to the directions of highest loadings. In this respect, Shirk et al. [7] defined

the aeroelastic tailoring as following: “Aeroelastic tailoring is the embodiment of

directional stiffness into an aircraft structural design to control aeroelastic

deformation, static or dynamic, in such a fashion as to affect the aerodynamic and

structural performance of that aircraft in a beneficial way”.

1.4 Problem Statement

From the context of aeroelastic tailoring, it is noted that most of the works in this

area have been centered on the use of uni-directional composites where there is a

high level of anisotropy. However, woven composites have been rarely used in this

field leaving a door open for further research and development. Following this

direction the present work will investigate the tailoring effects of woven

fiberglass/epoxy in plate like wings along some structural parameters i.e. aspect ratio

and sweep angle.

1.5 Objective and Research Outline

Bearing in mind that the aeroelastic tailoring itself is an optimization process, the

primary objective of the present work is to study the effect of structural parameters,

i.e. ply orientation angle, sweep angle, and aspect ratio (as the design variables) on

the flutter speed (as the objective function) of a laminated composite wing idealized

as a flat plate. A simplified model is sufficient for the purpose of optimization at the
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preliminary design stage. Another objective is to experimentally verify the

aeroelastic tailoring effect in the wind tunnel.

Unlike the conventional optimization problem, where reducing weight is the main

objective, by integrating aeroelastic requirements into design process, minimum

weight might not be the most important goal to achieve. As with the current work the

maximization of flutter speed is sought through an aeroelastically tailored flat plat.

The work flow of the current research is depicted in the following flow-chart.

Figure 1.3: The Work Flow of the Current Research

1.6 Thesis Outline

This dissertation consists of six chapters. The first chapter provides an introduction

to the present work. Chapter two covers an overview of the previous works in the

areas of aeroelasticity and aeroelastic tailoring.

Computational Procedure
Validation

Recording the Flutter Speed

Experimental Verification

Material Selection and
Configurations


