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Abstract of thesis presented to the Senate of Universiti Putra Malaysia in
fulfilment of the requirement for the Master of Science.

INTERACTION BETWEEN INCLINED AND CURVED CRACKS
PROBLEMS IN PLANE ELASTICITY

By

MOHD RADZI ARIDI

June 2014

Chair: Nik Mohd Asri Nik Long, PhD
Institute: Institute for Mathematical Research

In this thesis, the interaction between inclined and curved cracks problem in
plane elasticity is formulated into the hypersingular integral equations using the
complex variable function method. Then, using the curved length coordinate
method, the cracks are mapped into a straight line which require less collocation
points, hence give faster convergence.

In order to solve the equations numerically, the quadrature rules are applied and
we obtained the unknown coefficients with M+1 collocation points. The obtained
unknown coefficients will later be used in calculating the stress intensity factors.
Firstly, we investigated the problems between straight and curved cracks problem
in plane elasticity. The results give good agreements with the existence results.
Then, we extended the problem for the interaction between inclined and curved
cracks problem in plane elasitcity. For numerical examples, four types of loading
modes have been presented : Mode I, Mode II, Mode III and Mix Mode.
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Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
sebagai memenuhi keperluan untuk Sarjana Sains.

HUBUNGAN ANTARA MASALAH REKAHAN CONDONG DAN
MELENGKUNG PADA SATAH ELASTIK

Oleh

MOHD RADZI ARIDI

Jun 2014

Pengerusi: Nik Mohd Asri Nik Long, PhD
Institut : Institut Penyelidikan Matematik

Dalam tesis ini, hubungan antara rekahan menaik dan melengkung pada satah
elastik diformulakan kepada persamaan pengamiran hipersingular dengan meng-
gunakan kaedah fungsi pembolehubah kompleks. Kemudian, dengan menggu-
nakan kaedah koordinat panjang lengkung, retakan dipetakan pada satu garis lu-
rus yang hanya memerlukan titik kolokasi yang sedikit, seterusnya menghasilkan
penumpuan yang cepat.

Untuk menyelesaikan persamaan secara berangka, kaedah kuadratur digunakan
untuk memperoleh pekali yang tidak diketahui dengan menggunakan sebanyak
M + 1 titik kolokasi. Pekali yang terhasil digunakan untuk mengira faktor kea-
matan tekanan. Sebagai permulaan, hubungan rekahan lurus dan melengkung
pada satah elastik dikaji. Keputusan yang baik dicapai berdasarkan kajian se-
belum ini. Kemudian, kajian diteruskan untuk hubungan antara rekahan menaik
dan melengkung pada satah elastik. Sebagai contoh penyelesaian berangka, em-
pat jenis mod muatan diambil kira: Mod I, Mod II, Mod III and Mod Campuran.
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CHAPTER 1

INTRODUCTION

1.1 Preliminaries

Fracture mechanics is one of the engineering field of mechanics concerned with
the study of crack propagation in materials. It also known as solid mechanic
that deals with the mechanical behaviour of cracked bodies. Using methods of
analytical solid mechanics, one can calculate the driving force on a crack. Those
of the experimental solid mechanics characterize the resistance of materials to
fracture.

Predicting the fatigue life of cracked components is one of the most important
tasks in engineering of fracture mechanics. The fracture mechanics plays as an
important tool in improving the mechanical performance of mechanical struc-
tures. Based on the theories of elasticity and plasticity, it applies the stress and
strain to the materials in order to predict the mechanical failure of bodies. Frac-
ture mechanics can be divided into two main categories, Linear Elastic Fracture
Mechanics (LEFM) and Elastic Plastic Fracture Mechanics (EPFM).

LEFM deals with the basic theory of fracture with sharp cracks in elastic bodies.
By assuming the material is isotropic and linear elastic, the stress field near the
crack tip can be evaluated using the theory of elasticity. The crack will grow when
the stresses near the crack tip exceed the material fracture toughness. However,
LEFM is limited for small-scale yielding only, when the inelastic deformation is
small compared to the size of the crack. In order to overcome this limitation,
EPFM will be used if large zones of plastic deformation develop before the crack
grows. Under EPFM, by assuming the material is isotropic and elastic-plastic, the
strain energy fields or opening displacement near the crack tips can be evaluated.
The crack will grow when the energy or opening exceeds the critical value.

Development of fracture mechanics understanding based on linear elasticity can
be found from the pioneer work by Inglis (1913), Griffith (1920), Westgaard
(1939) and Irwin (1957). Inglis (1913) done a first major step in the direction of
quantification of the effects of crack-like defects. He observed the stress analysis of
an elliptical hole in an infinite linear elastic plate loaded at its outer boundaries
and modeled the crack-like discontinuity by making the minor axis very much
less than the major. However, his solution poses difficulty for the limit of a
perfectly sharp crack. In other words, the stresses approach infinity at the crack
tip. In order to overcome the problem, Griffith (1920) extended Inglis’s solution
and employed an energy balance approach rather than focusing on the crack tip
stresses directly. He observed that when a crack has grown into a solid, a region
of material adjacent to the free surface is unloaded and its strain energy released.

Westgaard (1939) derived the asymptotic solution for a stationary crack loaded
dynamically using the complex stress functions. His method provides a powerful
technique for solving the infinite linear elastic plane containing a crack or array of
cracks. Based on Griffith’s work, Irwin (1957) developed the energy release rate
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into a more useful form for engineering problems. Using Westgaard’s approach, he
described the stresses and displacements near the crack tip by a single parameter.
This crack tip characterizing parameter later become known as the stress intensity
factors. As a result, many researchers paid attention on evaluating the stress
intensity factors and computed data of the stress intensity factors have been
mainly used in evaluating the safety of components. In relation to the stress
intensity factors, a set of rules can be obtained for predicting the fatigue life of
the cracked components.

1.2 Analysis of stress

Assume that a volume V of arbitrary shape and the forces acting on the infinite

small volume element dV have the form
−→
ΦdV where

−→
Φ is some finite vector

for any point (x, y, z). A body force, acting on a volume element dV may be

represented by a vector
−→
ΦdV . It applies to some point of the element dV and

must be understood in the sense that the resultant force vector
−→
Ψ acting on any

finite volume V of the body. The resultant force may be represented by a triple
integral (Muskhelishvili, 1957)

−→
Ψ =

∫∫∫
V

−→
ΦdV =

∫∫∫
V

−→
Φdxdydz (1.1)

Similarly, the resultant moments of these forces about the axes 0x, 0y, 0z of an
orthogonal, are given by

Mx =

∫∫∫
V

(yσzn − zσyn)dxdydz

My =

∫∫∫
V

(zσxn − xσzn)dxdydz

Mz =

∫∫∫
V

(xσyn − yσxn)dxdydz

(1.2)

where σxn, σyn, σzn are the components of the vector
−→
Φ . The components of the

stress vector acting on the plane normal to 0x are denoted by σxx, σxy, σxz where
σxx is the normal stress component acting on this plane while σxy, σxz are the
tangential or shear stress components. Similarly, σyx, σyy, σyz and σzx, σzy, σzz
are the stress components acting on the plane normal to 0y and 0z respectively.
Noted that the subscript notation for a stress component σab represent the stress
on the plane a along b direction.

1.3 Stress intensity factors

From the viewpoint of fracture analysis, the stress intensity factors is the coeffi-
cient obtainable from the singular stress field in the front of a crack. The behavior
of the singular stress field was actually observed by Muskhelishvili (1957) for the

2
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Figure 1.1: The stress components (Muskhelishvili, 1957).

collinear crack case. His pioneering book contains the fundamental equations of
the mechanics of elastic bodies and general formula for elementary applications.

In predicting the stress behaviour at the crack tip, the stress intensity factor,
K is used in fracture mechanics. Since the pioneer work of Irwin (1957), the
stress intensity factors is a major achievement in the theoretical foundation of
LEFM. In other words, it is usually used to a homogeneous and linear elastic
material which give a small scale yielding at the crack tip. Under LEFM, the
stress distribution, σij near the crack tip in polar coordinates (r, θ) with origin
at the crack tip is given by (Tada et al., 2000)

σij(r, θ) =
K√
2πr

fij(θ) (1.3)

where K is the stress intensity factor and fij is a dimensionless quantity that
depends on the load and geometry.

Figure 1.2: Polar coordinate at the crack tip (Tada et al., 2000).

3
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Irwin (1957) proposed three modes of fracture based on the relative movement
of the faces of the crack. From Figure 1.3, the three load types are categorized
as mode I, mode II and mode III. Mode I is the normal or tensile mode where
the crack surfaces move directly apart while mode II is the shear or sliding mode
where the crack surfaces slide over one another in a direction perpendicular to
the leading edge of the crack. Mode III is the tearing or antiplane shear mode
where the crack surfaces move relative to one another and parallel to the leading
edge of the crack.

Figure 1.3: The mode I, mode II and mode III crack loading (Rooke
and Cartwright, 1976).

The stress intensity factor for mode I is presented as K1 and applied to the crack
opening mode while K2 and K3 represented the stress intensity factors for mode
II (shear mode) and mode III (tearing mode) respectively. These factors are
defined as

K1 = lim
r→0

√
2πrσyy(r, 0)

K2 = lim
r→0

√
2πrσyx(r, 0)

K3 = lim
r→0

√
2πrσyz(r, 0)

(1.4)

1.4 Problem statements

In this thesis, we investigate the crack problems between straight or inclined
with curved cracks in plane elasticity. Based on work by Chen (2003) and using
the superposition techniques described by Kachanov (1987), the multiple cracks
problems can be solved numerically.

The research questions of these problems are:

1. how to formulate the multiple cracks problem between straight or inclined
with curved crack?

2. how to obtain the hypersingular integral equations for the above mentioned
problems?

3. how to map the multiple cracks into a real axis?

4
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4. how to construct the quadrature rule to obtain the unknown coefficients?

1.5 Objectives

Based on the identified problem, the objectives of this investigation are:

1. to formulate the mathematical model for the interaction between straight
or inclined crack with curved crack.

2. to obtain the hypersingular integral equations for the above mentioned prob-
lems.

3. to map the multiple cracks into a real axis by using the curved length
coordinate.

4. to develop the numerical scheme for solving the hypersingular integral equa-
tion appears in these problems.

1.6 Scope of study

The scope of this research will be mainly focused on formulation of the hyper-
singular integral equation for two different crack problems. Four types of loading
modes will be considered in this research which are Mode I, Mode II, Mode III
and Mix Mode to represent the numerical results.

1.7 Outline of thesis

This thesis covers six chapters with the following contents:

Chapter 1 gives a brief introduction of this study in viewpoint of fracture anal-
ysis. Some keywords, for example LEFM, EPFM and SIFs are introduced. The
research questions and the objectives for this research are also included in this
chapter. Chapter 2 focuses on the previous work done by many researchers.
This chapter reviews the method for solving cracks problems such as singular
integral equations, Fredholm integral equation, hypersingular integral equation,
finite element method and boundary element method. Chapter 3 will cover the
methodology for solving the crack problem. A compact survey for plane elasticity
crack problems is also carried out. The concept of the complex variable function
method is emphasized. The hypersingular integral equations and superposition
principle are introduced. The right hand term for the equation is also discussed
in this chapter. Chapter 4 discusses the interaction between straight and curved
cracks in plane elasticity. In this chapter, the formulation of the problem, curved
length coordinate method, quadrature rule and stress intensity factor are pre-
sented. The interaction between inclined and curved cracks in plane elastivity is
discussed in chapter 5. The method approach in this chapter follows as Chapter
4 with different position between the two cracks. Lastly, Chapter 6 contains the
summary of the study and the suggestion for future research.

5
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