UNIVERSITI PUTRA MALAYSIA

MECHANISMS OF ONCOLOYTIC ACTIVITY OF NEWCASTLE DISEASE VIRUS STRAIN AF2240 IN HUMAN RENAL CARCINOMA CELL LINE

CH’NG WEI CHOONG

FBSB 2014 17
MECHANISMS OF ONCOLYTIC ACTIVITY OF NEWCASTLE DISEASE
VIRUS STRAIN AF2240 IN HUMAN RENAL CARCINOMA CELL LINE

By

CH’NG WEI CHOONG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2014
All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia
Newcastle disease virus (NDV) is an oncolytic virus that is known to selectively replicate in cancer cells compared to normal cells. It has been proposed that this preference is due to a defect in the cancer cells' interferon (IFN) responses. The exact mechanism underlying this process, however, remains unknown. In the present study, the antiviral response towards NDV infection by clear cell renal cell carcinoma (RCC) cells was examined. The most common first line treatment of RCC is using IFN. Unfortunately, most RCC cases are diagnosed at a late stage and often are resistant to IFN therapies. Alternative treatment approaches, including virotherapy, using oncolytic viruses, are currently being investigated. The present study used proteomic, molecular, immunological and biochemical techniques to investigate the mechanistic pathways that are involved in the response of RCC cells with defective or reconstituted wild type (wt) von Hippel-Lindau (VHL) gene activity to an oncolytic NDV infection.

It was observed that NDV induced activation of NF-κB in RCC cells by inducing phosphorylation of IκBα and its subsequent degradation. IκBα was phosphorylated as early as 1 hour post-infection and resulted in rapid NF-κB nuclear translocation and activation. Importantly, p38 MAPK phosphorylation occurred upstream of the NF-κB activation. These data provide evidence for the involvement of the p38 MAPK/NF-κB/IκBα pathway in NDV infection and eventual apoptosis of RCC cells. Since the results indicated that there was a possible correlation between the pathway and IFN-β signaling, additional experiments were performed to further understand the IFN-β signalling, specifically STAT pathway, in NDV-infected RCC cells under various microenvironmental factors.

The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and
regulates expression of many genes that contribute to aggressive malignancy, radio-
and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent
(velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α,
renal cell carcinoma (RCC) cell lines with defective or reconstituted wild type (wt)
von Hippel-Lindau (VHL) gene activity were used. The data showed that these RCC
cells responded to NDV by producing only IFN-β, but not IFN-α and are associated
with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced
NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and
increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the
cells' HIF-2α levels.

In summary, this study demonstrates IFN-β may play important role in NDV
oncolysis through activation of p38 MAPK/NF-κB/IκBα and STAT pathways in
renal cell carcinoma. Altogether, these findings provide a better mechanistic
understanding of NDV-mediated cell death and also highlight the potential of
oncolytic local strain of NDV AF2240 as a potent therapeutic agent against
normoxic and hypoxic cancer cells, especially renal cell carcinoma.
MEKANISMA AKTIVITI ONKOLITIK VIRUS PENYAKIT SAMPAR
AYAM STRAIN AF2240 DALAM JUJUKAN SEL KARSINOMA GINJAL
MANUSIA

Oleh

CH’NG WEI CHOONG

Mei 2014

Pengerusi: Assoc. Prof. Norazizah Shafee, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Kawasan hipoksia selalunya dijumpai dalam tumor pepejal. Faktor induksi hipoksia (HIF) adalah sejenis faktor transkripsi yang aktif di kawasan tersebut. Ia mengawal ekspresi gen-gen yang menyumbang kepada keagresifan maglinan yang rintang terhadap rawatan. Kajian selanjutnya dilakukan untuk mengkaji pula keberkesanan onkilotik virulen NDV di dalam jujukan sel RCC yang mempunyai tahap ekspresi HIF-2α yang berbeza, iaitu jujukan sel RCC yang memiliki jenis liar von Hippel-Lindau (VHL) dan satu lagi tidak memilikinya. Keputusan daripada kajian ini menunjukkan bahawa penghasilan IFN-β dan peningkatan pemfosforilan STAT1 berlaku apabila sel-sel tersebut bertindak balas dengan NDV. Walau bagaimanapun, penghasilan IFN-α tidak dapat dikesan selepas infeksi NDV. Pemulihan jenis liar von Hippel-Lindau (VHL) meningkatkan penghasilan IFN-β, sekali gus menyebabkan pemfosforilan STAT1 yang berpanjangan dan peningkatan kematian sel. Hipoksia juga meningkatkan aktiviti onkilotik tanpa mengira tahap HIF-2α dalam sel-sel tersebut.

Secara keseluruhannya, kajian ini menunjukkan bahawa IFN-β memainkan peranan yang penting dalam onkolis NDV melalui pengaktifan laluan p38 MAPK/NF-κB/IκBα dan laluan STAT bagi sel karsinoma ginjal. Hasil daripada kajian ini memberi pemahaman yang mendalam tentang mekanisma yang terlibat dalam aktiviti onkilotik dan ia juga menunjukkan bahawa NDV AF2240 onkilotik strain tempatan mempunyai potensi yang tinggi sebagai agen terapeutik untuk membunuh sel-sel kanser terutamanya sel karsinoma ginjal dalam keadaan normoksia dan hipoksia.
ACKNOWLEDGEMENTS

The valuable work cannot be accomplished just by chance or by one person. First, I would like to express my sincere gratitude to my main supervisor, Associate Professor Dr. Norazizah Shafee, for her patience, scientific advice and insightful guidance during every stage of my study. Thank you for giving me the opportunity to join your research team and investing enormous efforts and time to help me all the way through, since my master’s program, 2008. My heartfelt appreciation also goes to Professor Eric J. Stanbridge, for his useful suggestions, helpful comments and constructive discussions. Many thanks for spending your precious time to read all my progress reports and taking time out to do periodic visits. I would also like to thank Professor Datin Paduka Dr. Khatijah Yusoff and Associate Professor Dr. Muhajir Hamid, for their trust and support over the course of my research work.

I am deeply indebted to all my colleagues from the Virology Laboratory at Faculty of Biotechnology and Biomolecular Sciences for creating a good and fun-filled laboratory environment in which to work and learn. Also, special thanks go to all my friends for their time, dedication and help throughout my postgraduate study.

I gratefully acknowledge the financial support of MyBrain15 from the Malaysian Ministry of Higher Education (MOHE) that made it possible to complete the study.

Last but not least, I would like to extend my special gratitude to my family members: my parents Ch’ng Ah Leik and Chu Sai Kim, sisters and brothers, for their love, blessings, understanding, warm encouragement and inspiration. Thank you.
I certify that a Thesis Examination Committee has met on 20 May 2014 to conduct the final examination of Ch’ng Wei Choong on his thesis entitled “Mechanisms of Oncolytic Activity of Newcastle Disease Virus Strain AF2240 in Human Renal Carcinoma Cell Line” in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Janna Ong Abdullah, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Latifah Saiful Yazan, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Fong Mun Yik, PhD
Professor
Department of Parasitology
Faculty of Medicine
Universiti Malaya
Malaysia
(External Examiner)

Satoshi Nishizuka, PhD
Assistant Professor
Department of Surgery
School of Medicine
Iwate Medical University
Japan
(External Examiner)

NORITAH OMAR, PhD
Associate Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 23 June 2014
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Norazizah Shafee, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Chairman)

Khatijah Yusoff, PhD
Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Muhajir Hamid, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

Eric J. Stanbridge, PhD
Professor
School of Medicine
University of California, Irvine
United States
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___________________________ Date: ___________________

Name and Matric No.: __
Declaration by Members of Supervisory Committee

This is to confirm that:
- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: __________________ Signature: __________________
Name of Chairman of Supervisory Committee: __________________
Name of Member of Supervisory Committee: __________________

Signature: __________________ Signature: __________________
Name of Member of Supervisory Committee: __________________
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>iv</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>vii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>ix</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
</tbody>
</table>

CHAPTER

1. **INTRODUCTION**

2. **LITERATURE REVIEW**

 2.1 Newcastle Disease Virus (NDV)
 2.1.1 Virus Classification
 2.1.2 Virion Structure
 2.1.2.1 Structural Proteins
 2.1.2.2 Non-structural Proteins
 2.1.3 Viral Replication Cycle
 2.1.4 NDV Acts as an Oncolytic Agent

 2.2 Antiviral Immune System
 2.2.1 Induction of Type I Interferon by Virus
 2.2.2 JAK/STAT Signaling Pathway Activated by Type I Interferon

 2.3 Renal Cell Carcinoma (RCC)
 2.3.1 Epidemiology of RCC
 2.3.2 General Features of RCC Subtypes

 2.4 Clear Cell RCC
 2.4.1 Molecular Genetic
 2.4.2 Pathology

 2.5 Genetic Events in Clear Cell RCC
 2.5.1 VHL, HIF and Clear Cell RCC
 2.5.2 HIF Proteosomal Degradation
 2.5.3 HIF Accumulation and Dysregulation

 2.6 Current Treatment for Clear Cell RCC
 2.6.1 Tyrosine Kinase Inhibitor
 2.6.1.1 Sunitinib
 2.6.1.2 Sorafenib
 2.6.1.3 Pazopanib
 2.6.2 Monoclonal Antibody
 2.6.2.1 Bevacizumab
 2.6.3 Mammalian Target of Rapamycin (mTOR) Inhibitor
 2.6.3.1 Temsiroliimus
 2.6.3.2 Everolimus
 2.6.4 Future Direction

3 NEWCASTLE DISEASE VIRUS PROMOTES APOPTOSIS IN HUMAN RENAL CARCINOMA CELLS THROUGH THE ACTIVATION OF THE p38 MAPK/NF-κB/IκB ALPHA PATHWAY

3.1 Introduction 27

3.2 Materials and Methods 28
 3.2.1 Chemicals and Reagents 28
 3.2.2 Cell Culture 28
 3.2.2.1 Source of Cell Lines 28
 3.2.2.2 Cell Culture Conditions 28
 3.2.2.3 Cell Counting 28
 3.2.2.4 Cryopreservation of Cells 29
 3.2.2.5 Thawing of Cells 29
 3.2.2.6 Mycoplasma Detection by DAPI Staining 29
 3.2.3 Preparation of Newcastle Disease Virus (NDV) AF2240 30
 3.2.3.1 Source of NDV AF2240 30
 3.2.3.2 Propagation and Purification of NDV AF2240 30
 3.2.4 Quantitation of Newcastle Disease Virus Titer 30
 3.2.4.1 Haemagglutination (HA) Assay 30
 3.2.4.2 Plaque Assay 31
 3.2.4.3 NDV Infection 31
 3.2.5 Preparation of Bacterial Clones containing pGL4.32[luc2P/NF-κB-RE/Hygro] or pRL-CMV 32
 3.2.5.1 Source of Plasmids 32
 3.2.5.2 Transformation 32
 3.2.6 Screening of Bacterial Clones 32
 3.2.6.1 Extraction of Plasmids 32
 3.2.6.2 Validation of Positive Clones 33
 3.2.6.3 Preparation of Bacterial Stocks 33
 3.2.7 Large Scale Purification of Endotoxin-free Plasmids 34
 3.2.8 Measurement of NF-κB activity 34
 3.2.8.1 Transfection 34
 3.2.8.2 NDV and LPS Treatment 35
 3.2.8.3 Dual luciferase reporter (DLR) assay 35
 3.2.9 Preparation and Quantification of Protein Sample 35
 3.2.9.1 Total Cell Lysate Preparation 35
 3.2.9.2 Nuclear and Cytoplasmic Protein Extraction 36
 3.2.9.3 Determination of Protein Concentration 36
 3.2.10 Measurement of Protein Expression Levels 37
 3.2.10.1 Source of Antibodies 37
 3.2.10.2 SDS-PAGE Gel Preparation 37
 3.2.10.3 Protein Preparation for SDS-PAGE 37
 3.2.10.4 Western Blotting and Immunodetection 37
 3.2.10.5 Determination of Transfer Efficiency 38
 3.2.11 Measurement of Type I Interferon levels by ELISA 38
 3.2.12 Cell Viability Analysis (Thiazole Orange / Propidium Iodide Staining) 39
 3.2.13 Statistical Analysis 39

xii
3.3 Results
 3.3.1 Mycoplasma-free Cell Cultures
 3.3.2 Detection and Quantitation of NDV AF2240
 3.3.3 Screening of Bacterial Clones Containing pGL4.32[luc2P/NF-κB-RE/Hygro] and pRL-CMV
 3.3.4 NDV Induced Activation of NF-κB by Targeting IκBα Degradation
 3.3.5 NF-κB Activation is Associated with Its Nuclear Translocation
 3.3.6 NDV Induces p38 MAPK Phosphorylation Upstream of NF-κB Activation
 3.3.7 NDV-induced NF-κB Activation Correlates with PARP1 Cleavage and Eventual Death of Infected 786-O Cells

3.4 Discussion
3.5 Conclusion

4 THE ONCOLYTIC ACTIVITY OF NEWCASTLE DISEASE VIRUS IN CLEAR CELL RENAL CARCINOMA CELLS IN NORMOXIC AND HYPOXIC CONDITIONS: THE INTERPLAY BETWEEN VHL AND INTERFERON-β SIGNALING
4.1 Introduction
4.2 Materials and Methods
 4.2.1 Cell line, Culture Conditions and Virus
 4.2.2 Immunodetection
 4.2.3 Cell Viability Analysis
 4.2.3.1 MTT Cytotoxicity Assay
 4.2.3.2 Thiazole Orange / Propidium Iodide Staining
 4.2.4 Apoptosis Detection
 4.2.4.1 DNA Fragmentation Assay
 4.2.4.2 TUNEL Staining
 4.2.4.3 Propidium Iodide Staining
 4.2.5 Measurement of Interferon Levels
 4.2.6 Statistical Analysis
4.3 Results
 4.3.1 NDV Infection is Affected by The VHL Status of RCC Cells
 4.3.2 NDV Induced Higher Cytotoxicity in 786-VHL Compared to 786-O Cells
 4.3.3 Restoration of VHL Enhances NDV-induced IFN-β Secretion and STAT1 Phosphorylation
 4.3.4 Hypoxia Enhanced NDV-induced Oncolysis of RCC Cells
 4.3.5 NDV Infection Leads to a Downregulation of VHL in 786-VHL Cells
4.4 Discussion
4.5 Conclusion
4.6 Copyright Permission
5 SUMMARY, GENERAL CONCLUSION AND RECOMMENDATION FOR FUTURE RESEARCH

REFERENCES 90
APPENDICES 106
BIODATA OF STUDENT 114
LIST OF PUBLICATIONS 115
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General features of renal cell carcinoma subtypes</td>
<td>17</td>
</tr>
<tr>
<td>2. Molecular targets of molecular targeted therapeutic agents</td>
<td>22</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Diagrammatic representation of the structural organization of the Newcastle disease virus.</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Newcastle disease virus (NDV) replication cycle.</td>
<td>8</td>
</tr>
<tr>
<td>3.</td>
<td>Induction of type I interferon by virus.</td>
<td>12</td>
</tr>
<tr>
<td>4.</td>
<td>The JAK/STAT signal transduction pathway.</td>
<td>14</td>
</tr>
<tr>
<td>5.</td>
<td>Clear-cell renal cell carcinoma.</td>
<td>18</td>
</tr>
<tr>
<td>6.</td>
<td>The hypoxia-inducible factor-1 (HIF-1) pathway.</td>
<td>20</td>
</tr>
<tr>
<td>7.</td>
<td>Detection of mycoplasma contamination using DAPI staining.</td>
<td>41</td>
</tr>
<tr>
<td>8.</td>
<td>Detection and quantitation of NDV AF2240 using Hemagglutination (HA) test.</td>
<td>42</td>
</tr>
<tr>
<td>9.</td>
<td>Determination of infectious NDV virus titer using plaque assay.</td>
<td>43</td>
</tr>
<tr>
<td>10.</td>
<td>Validation of positive bacterial clones by RE digestion followed by gel electrophoresis analysis.</td>
<td>45</td>
</tr>
<tr>
<td>11.</td>
<td>Verification of functional luciferase activities in transfected mammalian cells by luciferase reporter assay.</td>
<td>46</td>
</tr>
<tr>
<td>12.</td>
<td>Confirmation of NDV infection and IκBα degradation in 786-O cells.</td>
<td>47</td>
</tr>
<tr>
<td>13.</td>
<td>NF-κB activity in 786-O cells following NDV infection.</td>
<td>48</td>
</tr>
<tr>
<td>14.</td>
<td>Kinetic studies of NF-κB activation and interferon-β production after NDV infection.</td>
<td>50</td>
</tr>
<tr>
<td>15.</td>
<td>Activation of NF-κB is associated with its nuclear translocation in infected 786-O cells.</td>
<td>51</td>
</tr>
<tr>
<td>16.</td>
<td>NDV induced p38 MAPK phosphorylation in 786-O cells.</td>
<td>52</td>
</tr>
<tr>
<td>17.</td>
<td>Time dependence of PARP1 cleavage in NDV-infected 786-O cells.</td>
<td>54</td>
</tr>
<tr>
<td>18.</td>
<td>A scatter plots of cell viability analysis in NDV-infected 786-O cells.</td>
<td>55</td>
</tr>
</tbody>
</table>
19. Reduction of cell viability in NDV-infected 786-O cells.

20. A distinctive cytopathic effect in 786-O cells caused by NDV infection.

21. Morphological changes in 786-O cells caused by NDV infection.

22. A schematic representation of the possible signaling pathways involved in NDV-mediated apoptotic death in infected cancer cells.

23. NDV virus nucleocapsid (NP) protein expression in 786-O and 786-VHL clear cell renal cell carcinoma cells after NDV infection.

24. Quantitation of progeny virus production in NDV-infected culture media.

25. Viability of 786-O and 786-VHL cells infected with NDV at 0.1 and 1.0 MOI.

26. NDV induced an increase in sub-G1 populations in 786-O and 786-VHL cells.

27. NDV-induced apoptosis in RCC cells detected by TUNEL.

29. Type I interferon secretion in RCC culture media following NDV infection.

30. Effects of VHL reconstitution on STAT1 and SOCS protein levels in the NDV-infected and mock-infected 786-O cells.

31. Hypoxia enhanced NDV-induced oncolysis of clear cell RCC cells.

32. Effects of hypoxia on the levels of VHL and HIF-2α in NDV-infected clear cell RCC cells.

33. Effects of hypoxia on the levels of total and phosphorylated STAT proteins in clear cell RCC cells after NDV infection.

34. Effect of hypoxia on the level of interferon-β production in NDV-infected clear cell RCC cells.

35. A schematic overview highlighting the signaling pathways involved in NDV-induced cell death in clear cell renal cell carcinoma cells.
LIST OF ABBREVIATIONS

CPE Cytopathic effect
DAPI 4’,6-Diamidino-2-Phenylindole, Dihydrochloride
FACS Fluorescence-activated cell sorting
HAU Hemagglutination unit
HIF Hypoxia inducible factor
HIF-1α Hypoxia inducible factor-1 alpha
HIF-2α Hypoxia inducible factor-2 alpha
hpi Hour(s) post-infection
IFN Interferon
IFN-α Interferon-alpha
IFN-β Interferon-beta
JAK/STAT Janus kinase / signal transducer and activator of transcription
MAPK Mitogen-activated protein kinase
MOI Multiplicity of infection
MTT Methylthiazolyldiphenyl-tetrazolium bromide
NDV Newcastle disease virus
NP Nucleocapsid protein
PARP1 Poly (ADP-ribose) polymerase 1
PHD Prolyl hydroxylase domain
PKR Protein kinase R
RCC Renal cell carcinoma
RIPA Radio-immunoprecipitation assay
SOCS Suppressor of cytokine signaling

xviii
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT1</td>
<td>Signal transducer and activator of transcription 1</td>
</tr>
<tr>
<td>TNF-α</td>
<td>Tumor necrosis factor-alpha</td>
</tr>
<tr>
<td>TUNEL</td>
<td>Terminal deoxynucleotidyl transferase dUTP nick end labelling</td>
</tr>
<tr>
<td>VHL</td>
<td>Von Hippel-Lindau</td>
</tr>
<tr>
<td>VSV</td>
<td>Vesicular stomatitis virus</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

Newcastle disease virus (NDV) is a type of avian virus belonging to the Paramyxoviridae family (Yusoff and Tan, 2001). It is of interest to cancer researchers due to its oncolytic properties. In cancer cells with naturally occurring defective antiviral defense systems, the virus can replicate up to 10,000 times better compared to normal cells (Reichard et al., 1992). In recent years, many scientific reports and phase I/II/III clinical trials revealed that NDV can act as a potent and promising therapeutic agent against cancers (Lam et al., 2011; N.C.I., 2013). Despite various studies, NDV has not been approved by the U.S. Food and Drug Administration for cancer treatment. This is because, in some clinical trials, positive outcomes were not significantly observed (N.C.I., 2013). NDV-modified tumor cells vaccine has been shown to improve both recurrence-free and overall survival of patients with colon carcinoma in a phase II trial (Schlag et al., 1992). Some advanced renal cell carcinoma patients displayed partial responses including partial remission (15%) and stable disease (30%) after the treatment (Pomer et al., 1995). Such vaccine, however, did not show remarkable clinical efficacy in melanoma patients (Voit et al., 2003). The main obstacle in reducing the unfavourable outcome is the lack of sufficient understanding of the mechanisms of NDV infection in cancer cells. The complexity and heterogeneity of the various types of cancers also are major factors.

Renal cancer is a common adult malignancy worldwide (Globocan, 2012). Majority of patients are asymptomatic over a long period of time until the disease become locally advanced. Clear cell renal cell carcinoma (RCC) is the most lethal and dominant subtype of adult renal cancer (Eble et al., 2004; Thomas and Tawfik, 2008; Zhou and He, 2013). This subtype is less susceptible to conventional oncologic treatments including radiotherapy and chemotherapy. To date, several molecular-targeted agents are approved by the U.S. Food and Drug Administration for RCC treatment (Fisher et al., 2013). Unfortunately, complete responses are very rare, with undesirable side effects.

Currently, the first line treatment option available for RCC is using interferon (IFN) therapy. Even though it is the first line option, therapeutic response of patients with metastasis is low, around 15-20% (Unnithan and Rini, 2007). IFN secreted by cells in response to virus infections has been shown to be beneficial, with oncolytic viruses. The specificity of NDV-mediated killing of cancer cells has been proposed to be due to defects in the type I interferon (IFN-α/β) response of the cells (Stojdl et al., 2000; Fiola et al., 2006). Cancer cells responded to NDV infection by producing only IFN-β production (Elankumaran et al., 2010). The efficacy and safety of vesicular stomatitis virus (VSV) as an oncolytic agent has been shown to be enhanced by IFN-β, through immune-mediated mechanisms, in mesothelioma (Willmon et al., 2009). This observation leads to the possibility of manipulating the exclusive IFN-β induction by NDV as a potential strategy to boost the efficacy and
safety of NDV as an oncolytic agent in clinical settings. This option could be closely examined if the detailed mechanism of cellular responses to NDV infection is known.

In the present study, the oncolytic activities of a local isolate of NDV (designated as AF2240) in RCC cell lines was investigated. It is hypothesized that NDV oncolytic properties can be enhanced in renal carcinoma cells through the manipulation of interferon-related pathways. To test this hypothesis, the study was designed with the main objective to investigate the molecular mechanisms underlying NDV oncolysis in human clear cell renal cell carcinoma (RCC) cell lines. The specific aims of the study were:

1. To examine the oncolytic activity of NDV in renal carcinoma cells.
2. To study the response of the p38MAPK/NF-κB/1xBα pathway in NDV-infected renal carcinoma cells.
3. To investigate the involvement of interferons in the oncolytic activity of NDV in renal carcinoma cells.
REFERENCES

κB activation enhances cell death by antimitotic drugs in human prostate

nucleolar localization of the Newcastle disease virus (NDV) matrix protein
occur early in infection and do not require other NDV proteins. *J Virol* 66:
3263-3269.

Pensa, S., Regis, G., Boselli, D., Novelli, F. and Poli, V. (2009) STAT1 and STAT3
in Tumorigenesis. IN Stephanou, A. (Ed.) *JAK-STAT Pathway in Disease.*
Texas, Landes Bioscience Books: 100–121.

danger sensing complex triggering innate immunity. *Curr Opin Immunol* 19:
615-622.

Reis E Sousa, C. (2006). RIG-I-mediated antiviral responses to single-

Pomer, S., Schirrmacher, V., Thiele, R., Lohrke, H., Brkovic, D. and Staehler, G.
(1995). Tumor response and 4 year survival-data of patients with advanced
renal-cell carcinoma treated with autologous tumor vaccine and subcutaneous

Protzel, C., Maruschke, M. and Hakenberg, O.W. (2012). Epidemiology, Aetiology,
and Pathogenesis of Renal Cell Carcinoma. *European Urology Supplements*
11: 52-59.

Surg* 93: 156-161.

Ramsauer, K., Sadzak, I., Porras, A., Pilz, A., Nebreda, A.R., Decker, T. and
Kovarik, P. (2002). p38 MAPK enhances STAT1-dependent transcription
independently of Ser-727 phosphorylation. *Proc Natl Acad Sci U S A* 99:
12859-12864.

between induction, signalling, antiviral responses and virus countermeasures.

