

UNIVERSITI PUTRA MALAYSIA

COMPARISON OF SOFTWARE TESTING TOOLS ON GUI
FEATURES

FATIMAH GHAZALI

FSKTM 2005 11

 i

COMPARISON OF SOFTWARE TESTING TOOLS ON GUI
FEATURES

By

FATIMAH GHAZALI

A project Paper submitted to the Schools of Graduate Studies, Universiti
Putra Malaysia in Fulfillment of the Requirement for the Degree of Master

of Science

April 2005

 ii

Abstract of thesis presented to the Senate of University Putra Malaysia in

fulfillment of the requirement for degree of Master of Science

COMPARISON OF SOFTWARE TESTING TOOLS ON GUI

FEATURES

By

FATIMAH BINTI GHAZALI

APRIL 2005

Chairwoman: Puan Norhayati Mohd Ali

Faculty: Faculty of Computer Science and Information Technology

Abstract

Software testing is an important approach to software quality

assurance. It is a kind of software development activity throughout all the

life cycle of software development, whose purpose is to find the potential

errors or bugs of software as many as possible. Hence, software testing tools

were developed to assists software engineering to gauge the quality of

software automating the mechanical aspects of the software testing tasks.

Software testing tools vary in their underlying approach, quality and ease-

of-use among the other features.

This project paper compares and measures three selected software

testing tools that available in current market. These testing tools were

downloading from Internet. Comparison of three selected testing tools based

 iii

on graphical user interface (GUI) features and usability. The GUI features

are proposed by Stephen Morris. The software testing tools also measured

on usability aspect from user’s perspective to determine the efficiency,

affect, helpfulness, control and learnability of software testing tools. The

result of the study was to propose general features of GUI for software

testing tools that should be considered in software testing tools.

 iv

Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia

sebagai memenuhi keperluan untuk Ijazah Master Sains

COMPARISON OF SOFTWARE TESTING TOOLS ON GUI

FEATURES

By

FATIMAH BINTI GHAZALI

APRIL 2005

Pengerusi: Puan Norhayati Mohd Ali

Fakulti : Fakulti Sains Komputer dan Teknologi Maklumat

Pengujian perisian adalah satu pendekatan yang penting kepada

jaminan perisian yang berkualiti. Ia adalah satu aktiviti pembangunan

perisian melalui keseluruhan kitar hayat pembangunan perisian, yang mana

tujuannya adalah untuk mencari ralat dan pepijat sebanyak mungkin di

dalam sesuatu perisian. Maka dengan itu, alat bantuan pengujian perisian

(software testing tools) dibangunkan untuk membantu kejuruteraan perisian

untuk mengukur kualiti perisian mengautomasikan aspek makanikal tugas

pengujian perisian. Alat bantuan pengujian perisian mempunyai pendekatan

yang berbeza-beza, kualiti dan senang guna di kalangan ciri-ciri yang lain.

Projek ini membanding dan mengukur tiga alat bantu pengujian

perisian yang terdapat dalam pasaran semasa. Alat bantu pengujian ini

dimuaturun daripada Internet. Perbandingan ketiga-tiga alat bantu pengujian

 v

dibuat berdasarkan kepada ciri-ciri antaramuka pengguna bergrafik dan

kebolehgunaan. Ciri-ciri antaramuka pengguna bergrafik dicadangkan oleh

Stephen Morris. Alat bantu pengujian perisian juga diukur berdasarkan

kepada kebolehan perisian dari perspektif pengguna bagi menentukan

keberkesanan, pengaruh, bantuan, kawalan dan penggunaan alat bantu

pengujian perisian. Hasil daripada kajian telah mencadangkan ciri-ciri

umum antaramuka pengguna bergrafik untuk alat bantu pengujian perisian

yang diperlukan dipertimbangkan dalam alat bantu pengujian perisian.

 vi

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah s.w.t the only true God that rules

the earth, and everything beyond it. Nothing can be accomplished without

His consent. He is the all merciful, all giving. Never once has He left me in

moment of despair. He is the all powerful, all knowing, the creator, which

bestowed me with the wisdom to take a pace in this odyssey of knowledge. I

am forever grateful to His unconditional care.

 I would like to express my greatest appreciate to my supervisor,

Puan Norhayati Mohd Ali for her guidance, analytical advice and support

that led to the success of this project. I would like to express my thankful to

FSKTM students who participate as respondent. I’m also thankful to my

family and all of my friends, for their support and encourage in completing

this study. Lastly, I also would like to express my pleased to everybody who

involve direct or indirectly in completing this study.

 vii

APPROVAL

This project paper is submitted to the Faculty of Computer Science and

Information Technology, Universiti Putra Malaysia and was accepted as

fulfillment of the requirement for the degree of Master of Science

……………………………….

Puan Norhayati Bt Mohd Ali

Project Supervisor

Faculty of Computer Science and Information Technology

Universiti Putra Malaysia

Date :

 viii

DECLARATION

I hereby declare that this project report is based on my original work except

for quotations and citations which are duly acknowledge. I also declare that

it has not been previously or concurrently submitted for any other degree at

UPM or other institutions.

…...…………………

…

FATIMAH

GHAZALI

Date :

 ix

TABLE OF CONTENTS

ABSTRACT ii
ABSTRAK iv
ACKNOWLEDGEMENT vi
APPROVAL vii
DECLARATION viii
TABLE OF CONTENTS ix
LIST OF FIGURES xii
LIST OF TABLES xiii
LIST OF ABBREVIATIONS xiv

CHAPTER

1 INTRODUCTION

1.1 General Background of Study
1.2 Problem Statement

1
2

1.3 Objectives 3
1.4 Scope 3

2 LITERATURE REVIEW

2.1 Software Testing Tools 4
2.2 Features of GUI In Software Testing Tool 6

2.3.1 Features Proposed by Elisabeth Hendrickson 6
2.2.1.1 Scripting Language 7
2.2.1.2 User Interface Element Identifiers 7
2.2.1.3 Reusable Libraries 7
2.2.1.4 Outside Libraries 8
2.2.1.5 Abstract Layer 9
2.2.1.6 Distributed Tests 9
2.2.1.7 File Input/Output 10
2.2.1.8 Error Handling 11
2.2.1.9 The Debugger 11
2.2.1.10 Source Control 12
2.2.1.11 Command Line Script Execution
2.2.1.12 User Community

12
12

2.3.2 Features Proposed by Stephen Morris 13
2.2.2.1 Platform Requirement 13
2.2.2.2 Test Management 14
2.2.2.3 GUI Test Modes 15
2.2.2.4 Timing Considerations 16
2.2.2.5 Synchronization 17
2.2.2.6 Output Checking 18
2.2.2.7 Script Storage 19
2.2.2.8 Ease of Use 20
2.2.2.9 Resource Requirements 21
2.2.2.10 Additional Features 21

 x

2.3 Software Quality Feature in Software Testing Tools :
Usability – from User’s Perspective

24

2.3.1 Definitions of Usability 24
2.3.2 Characteristics of Usability 27
2.3.3 Measurement of Usability 29

3 METHODOLOGY 32

3.1 Reviewing the Literature 32
3.2 Identify Software Testing Tools 34

 3.2.1 Panorama C/C++ 34
 3.2.2 Resource Standard Measurement 35
 3.2.3 BullseyeCoverage 36

3.3 Questionnaire 36
3.4 Identity Research Group 38
3.5 Collecting Data 38
3.6 Compiling and Analyzing Result 39

4 ANALYSIS 40

4.1 Software Testing Tools 40
4.1.1 Panorama C/C++ 40
4.1.2 Resource Standard Metrics 46
4.1.3 BullseyeCoverage 47

4.2 Features of GUI In Software Testing Tools 49
4.3 Software Quality Feature in Software Testing Tools :

Usability – from Users’ Perspective
52

5 RESULT AND DISCUSSION 54

5.1 Result Of The Study 54
5.1.1 Features of GUI In Software Testing Tools 54
5.1.2 Software Quality Feature in Software Testing Tools :
Usability – from Users’ Perspective

61

5.2 Discussion 68
5.2.1 Features of GUI In Software Testing Tools 69

5.2.1.1 Platform Requirement 69
5.2.1.2 Test Management 70
5.2.1.3 GUI Test Modes 70
5.2.1.4 Timing Consideration 71
5.2.1.5 Synchronization 71
5.2.1.6 Output Checking 72
5.2.1.7 Script Storage 72
5.2.1.8 Ease of Use 72
5.2.1.9 Resource Requirement 73
5.2.1.10 Additional Features 73

5.2.2 Software Quality Feature in Software Testing Tools :
Usability – from Users’ Perspective

74

6 CONCLUSION 78

 xi

REFERENCES 80
APPENDIX A Questionnaire 84
APPENDIX B Item Consensual Analysis For Efficiency 87
APPENDIX C Item Consensual Analysis for Affect 88
APPENDIX D Item Consensual Analysis for Helpfulness 89
APPENDIX E Item Consensual Analysis for Control 90
APPENDIX F Item Consensual Analysis for Learnability 91

 xii

LIST OF FIGURES

Figure Page

Figure 3.1 Methodology Approach 33

Figure 4.1 Panorama C/C++’s automatic processes from input to
 Output

41

Figure 5.1 Percentage of GUI Features In Software Testing Tools 60

Figure 5.2 Profile Analysis for Panorama C/C++ 64

Figure 5.3 Profile Analysis for RSM 66

Figure 5.4 Profile Analysis for BullseyeCoverage 68

 xiii

LIST OF TABLES

Table Page

Table 2.1 Summary of the GUI Software testing Tools Features
 proposed by Elisabeth Hendrickson

22

Table 2.2 Summary of the GUI Software testing Tools Features
 proposed by Stephen Morris

23

Table 4.1 Platforms for BullseyeCoverage 48

Table 5.1 Platform requirement 54

Table 5.2 Test Management 55

Table 5.3 GUI Test Modes 56

Table 5.4 Timing Consideration 56

Table 5.5 Synchronization Method 57

Table 5.6 Output Checking 58

Table 5.7 Script Storage 58

Table 5.8 Ease of Use 59

Table 5.9 Resource Requirement 59

Table 5.10 Additional Features 61

Table 5.11 General Global Assessment of Usability 63

Table 5.12 Individual User Scores and Profile Analysis For
Panorama
 C/C++

63

Table 5.13 Individual User Scores and Profile Analysis For RSM 65

Table 5.14 Individual User Scores and Profile Analysis For
 BullseyeCoverage

67

 xiv

LIST OF ABBREVIATIONS

Abbreviation Words

GUI Graphical User Interface

SUMI Software Usability Measurement Inventory

RSM Resource Standard Metrics

OO-SQA Object-oriented-Software Quality Assurance

IDE Integrated Development Environment

HTML Hypertext Markup language

 1

CHAPTER ONE

INTORDUCTION

1.1 General Background for study

Software testing is a critical component of software development. Its

goal is to uncover and correct errors found in software. Since software

testing becomes an important branch of software engineering, there have

been abundant researches on software testing. Software testing is an

important approach to software quality assurance, is a kind of software

development activity throughout all the life cycle of software development,

whose purpose is to find the potential errors or bugs of software as many as

possible.

Over the past years several, tools that help programmers quickly create

application with user graphical interfaces have dramatically improved

programmer productivity. This has increased the pressure on testers, who

are often perceived as bottlenecks to the delivery of software products.

Testers are being asked to test more and more code in less and less time.

They need to dramatically improve their own productivity. In the process of

practice, creating test cases, executing test, recording and comparing test

results are the major activities of test. It is difficult to go on without the

 2

support of tools for all of these activities. Test automation is one way to do

this [Bret Pettichord, 2001].

The use of automated test tools to support the test process is proving to

be beneficial in terms of product quality, minimizing project schedule and

effort and reduced testing costs. Automated testing tools also assist software

engineering to gauges the quality of software automating the mechanical

aspect of the software testing task. Automated testing tools vary in their

underlying approach, quality and ease of use, among other features.

This paper discusses about features of GUI in software testing tools as

theoretically mentioned in books, journal, articles and other resources. By

referring these features, this paper is to identify the features that such a test

tool will need in order to satisfy them. The results are then used in the

survey of test tools to determine those that will be suitable for further

evaluation.

1.2 Problem Statement

In order to produce quality of software and to save time and cost, during

the testing phase, most of organization will be using software testing tools.

Chosen the right and quality tools will be determine the successful of

testing. There are many type of testing tools offered in current market and

Internet and it is difficult to categorize them neatly. Some of the testing

 3

tools are lack of the graphical user interface (GUI) features. This will

influence the usage of the testing tools. In fact, most developers do not use

automated testing tools in their testing activities. Therefore, this study was

to identify GUI features in software testing tools and to measure the

usability of the software testing tools from the users’ perspective.

1.3 Objective of The Study

The objectives of this study are:

i. to compare the three selected software testing tools in current market.

This discusses about the features of GUI in software testing tools.

ii. to find out the general features of GUI that must be considered to

develop software testing tools, which it is not limited to certain

organization or software.

iii. to measure the usability of the selected software testing tools from

users’ perspective.

1.4 Scope of the study

The scope of this study is to analyze the features of GUI in software

testing tools for source code/program structures either static analyzer or

dynamic analyzer. The software testing tools downloaded from Internet. It is

also to measure the usability of tools from users’ perspective.

 4

CHAPTER TWO

LITERATURE REVIEW

2.1 Software Testing Tool

C.V. Ramamoorthy and S.F Ho defined software testing tools is the

programs that check the presence of certain software attributes which can be

program syntax correctness, proper program control structures, proper

module interface, testing completeness and so on.

Automated software tools are tools designed to run programs and can

also be made to aid programmers in system development. One major

problem in dealing with large software system is the size. Automated tools

can scan a large volume of source code and indicate questionable features to

the human programmer (e.g unreliable program construct), and free the

programmer from repetitive tasks. As a debugging aid, automated tools can

be use to remove simple coding errors, and allow the programmer to

concentrate on advance system check out. As an optimization tool,

automated tools can indicate code section that merit detailed examination.

Successful application of program correctness proofs to large software

systems also depends on the automation generation of assertions by

automated tools or theorem provers. It means that, automated tools allow a

 5

small programming team to examine a large volume of code which is

otherwise impossible [C.V Ramamoorthy and S.F. Ho].

Martin Wieczorek [2001] stated that the requirement for testing tools

can be grouped into a number of different areas, including test planning and

management, requirement analysis and test case generation, inspection and

review, code quality analysis, functional testing, load and performance

testing and web application testing.

Bret Pettichord [2001], said that automating tests for a graphical user

interface presents significant difficulties not found in character based

interfaces, much less command line interfaces or programming interfaces

(APIs). Graphical user interfaces tend to be made of complex components

and tend to be constantly redesigned during the development process.

Significant successes have been made in delivering test tools that are able to

identify and manipulate graphical user interfaces.

Professor Ben-Avi in his paper Software Testing Technology was

categorized software quality assurance support tools in two categories.

There are static and dynamic analysis tools. Most tool functions fall cleanly

into one category or the other, but there are some exceptions like symbolic

evaluation systems and mutation analysis system (which actually run

interpretively). The main tools used in quality assurance static analyzers,

code inspectors, standard enforcers, coverage analyzers, output

 6

comparators, test file/data generators, test harness and test archiving

systems.

When the developers are deciding to use tools during testing phase,

they should consider the quality factors to evaluate software testing tools.

One of the software quality criteria is usability. Usability is an important

aspect of software product. Usable systems are easy to learn, efficiency to

use, not error-prone and satisfactory in use [Nielsen, 1993]. Usability brings

many benefits. According to ISO/IEC 13407, the benefits of usability

include “ increased productivity, enhanced quality of work, improved user

satisfaction, reductions in support and training costs and improved used

satisfaction”.

2.2 Features of GUI in software testing tools

2.2.1 Features proposed by Elisabeth Hendrickson

Elisabeth Hendrickson proposed the twelve features that are

important in any good software testing tool are scripting language, user

interface element identifiers, reusable libraries, outside libraries, abstract

layers, distributed tests, file input/output, error handling, the debugger,

source control, common line script execution and the user community.

Summary of these features is shown in Table 2.1.

 7

2.2.1.1 Scripting language

A prerequisite to all the other features for software testing tool is that

the tool must have a scripting language of some kind that contains the usual

programmatic constructs. At the very least, it should enable to edit recorded

scripts, support variables and data types, support arrays, lists, structures, or

other compound data types, support conditional logic (IF and CASE

statements), support loops (FOR, WHILE) also enable to create and call

functions.

2.2.1.2 User Interface (UI) element identifiers

In order to write test scripts that actually test something, the test tool

can identify the elements on tester UI as objects rather than trying to point

to them by coordinate. The tool can identify the UI elements in a variety of

representative windows. It is true that some UI elements aren’t really

controls at all, just bitmaps that do something when you click on them.

Software that uses UI elements that are bitmaps rather than real controls

won’t behave well with any automated testing tool.

2.2.1.3 Reusable libraries

Software testing tools need to support reusable library to store

function or subroutine that perform the search. The function library created

 8

to define the sequence of steps necessary to perform a search for testing an

application. Each script calls the function. Any scripts created with the tools

can easily call the functions that put in the library and the functions can take

parameters.

2.2.1.4 Outside libraries

In addition to creating tester’s own libraries, you’ll often find it

useful to access outside libraries. In Windows, .dll files are able to call. As

an example, consider a client/server system built to work with a relational

database. The software under test uses the database’s proprietary API

(Application Program Interface). If the automated tests can use the same

API, they can be more powerful. They can make checks the user interface

doesn’t allow. For example, they can check that a changed value was

actually written to the database, not just changed on the screen. They can

check whether a transaction was correctly and completely logged, even if

the UI gives no access to the log.

In general, these tests can determine “pass” or “fail” more accurately

than by checking the value through the user interface. If testing is doing on

a Windows system, then the Windows API will be accessed. The Windows

API enables you to get system information that would be difficult or

impossible to obtain in any other way. For example, it’s very useful to be

 9

able to get or set the value of a registry key from within the automated

scripts.

2.2.1.5 Abstract layers

An “Abstract Layer” to define logical names for physical user

interface elements. Some tools call this a “test map” or “GUI map” while

others call it a “test frame.” The purpose of the abstract layer is to make it

easier to maintain the tests. As an example, a login dialog box with fields

for name and password. Within the program, the programmer named those

fields “Name” and “Password.” An abstract layer is created to identify the

fields as “Name” and “Password” and proceed to use those identifiers in all

500 of the scripts. But with the next version of the software under test, the

underlying identifiers of the name and password fields become “username”

and “pword.” Instead of changing all 500 of the scripts, developer changes

the UI identifiers in the abstract layer. Several test tools offer features, such

as window recorders, specifically designed to support the creation of an

abstract layer.

2.2.1.6 Distributed tests

If application is testing multi-user software, software testing tool

need to be able to create tests that involve multiple simulated users. In a

distributed test, the automated testing tool enables to specify the machine on

 10

which to execute a given command. In launching a test on a remote

machine, the remote machine executes that test from beginning to end.

However, if the testing needs to coordinate on two different machines, then

the testing to do more than launch a test and let it run. Thus, testing tools

need to be able to create a test that waits for an action (such as locking a

file) to be complete on the first machine before beginning an action (such as

attempting to open the file) on the second machine.

2.2.1.7 File I/O

File I/O (input/output) means that the tool provides functions that

enable you to open a file on the hard disk (usually an ASCII file)

programmatically, read from it, write to it, and close it. File I/O functions

are central to “data-driven test automation.” In a data-driven automated test,

the script uses test data from a file to drive the test activity. Data-driven

testing makes it possible to automate a large number of tests with a minimal

amount of test automation code. For example, if the software under test

needs to know which server to use, then it’s a good idea to specify the

server name in an .ini file. Then the test server can changed without having

to change the automated scripts.

