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Abstract 

 

Software testing is an important approach to software quality 

assurance. It is a kind of software development activity throughout all the 

life cycle of software development, whose purpose is to find the potential 

errors or bugs of software as many as possible. Hence, software testing tools 

were developed to assists software engineering to gauge the quality of 

software automating the mechanical aspects of the software testing tasks. 

Software testing tools vary in their underlying approach, quality and ease-

of-use among the other features. 

 

This project paper compares and measures three selected software 

testing tools that available in current market. These testing tools were 

downloading from Internet. Comparison of three selected testing tools based 
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on graphical user interface (GUI) features and usability. The GUI features 

are proposed by Stephen Morris. The software testing tools also measured 

on usability aspect from user’s perspective to determine the efficiency, 

affect, helpfulness, control and learnability of software testing tools. The 

result of the study was to propose general features of GUI for software 

testing tools that should be considered in software testing tools. 
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Pengujian perisian adalah satu pendekatan yang penting kepada 

jaminan perisian yang berkualiti. Ia adalah satu aktiviti pembangunan 

perisian melalui keseluruhan kitar hayat pembangunan perisian, yang mana 

tujuannya adalah untuk mencari ralat dan pepijat  sebanyak mungkin di 

dalam sesuatu perisian. Maka dengan itu, alat bantuan pengujian perisian 

(software testing tools) dibangunkan untuk membantu kejuruteraan perisian 

untuk mengukur kualiti perisian mengautomasikan aspek makanikal tugas 

pengujian perisian. Alat bantuan pengujian perisian mempunyai pendekatan 

yang berbeza-beza, kualiti dan senang guna di kalangan ciri-ciri yang lain. 

 

Projek ini membanding dan mengukur tiga alat bantu pengujian 

perisian yang terdapat dalam pasaran semasa. Alat bantu pengujian ini 

dimuaturun daripada Internet. Perbandingan ketiga-tiga alat bantu pengujian 
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dibuat berdasarkan kepada ciri-ciri antaramuka pengguna bergrafik dan 

kebolehgunaan. Ciri-ciri antaramuka pengguna bergrafik dicadangkan oleh 

Stephen Morris. Alat bantu pengujian perisian juga diukur berdasarkan 

kepada kebolehan perisian dari perspektif pengguna bagi menentukan 

keberkesanan, pengaruh, bantuan, kawalan dan penggunaan alat bantu 

pengujian perisian. Hasil daripada kajian telah mencadangkan ciri-ciri 

umum antaramuka pengguna bergrafik untuk alat bantu pengujian perisian 

yang diperlukan dipertimbangkan dalam alat bantu pengujian perisian. 
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CHAPTER ONE 

 

INTORDUCTION 

 

1.1 General Background for study 

 

Software testing is a critical component of software development. Its 

goal is to uncover and correct errors found in software. Since software 

testing becomes an important branch of software engineering, there have 

been abundant researches on software testing. Software testing is an 

important approach to software quality assurance, is a kind of software 

development activity throughout all the life cycle of software development, 

whose purpose is to find the potential errors or bugs of software as many as 

possible. 

 

Over the past years several, tools that help programmers quickly create 

application with user graphical interfaces have dramatically improved 

programmer productivity. This has increased the pressure on testers, who 

are often perceived as bottlenecks to the delivery of software products. 

Testers are being asked to test more and more code in less and less time. 

They need to dramatically improve their own productivity. In the process of 

practice, creating test cases, executing test, recording and comparing test 

results are the major activities of test. It is difficult to go on without the 
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support of tools for all of these activities. Test automation is one way to do 

this [Bret Pettichord, 2001]. 

 

The use of automated test tools to support the test process is proving to 

be beneficial in terms of product quality, minimizing project schedule and 

effort and reduced testing costs. Automated testing tools also assist software 

engineering to gauges the quality of software automating the mechanical 

aspect of the software testing task. Automated testing tools vary in their 

underlying approach, quality and ease of use, among other features. 

 

This paper discusses about features of GUI in software testing tools as 

theoretically mentioned in books, journal, articles and other resources. By 

referring these features, this paper is to identify the features that such a test 

tool will need in order to satisfy them. The results are then used in the 

survey of test tools to determine those that will be suitable for further 

evaluation. 

 

1.2 Problem Statement  

 

In order to produce quality of software and to save time and cost, during 

the testing phase, most of organization will be using software testing tools. 

Chosen the right and quality tools will be determine the successful of 

testing. There are many type of testing tools offered in current market and 

Internet and it is difficult to categorize them neatly. Some of the testing 
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tools are lack of the graphical user interface (GUI) features. This will 

influence the usage of the testing tools. In fact, most developers do not use 

automated testing tools in their testing activities. Therefore, this study was 

to identify GUI features in software testing tools and to measure the 

usability of the software testing tools from the users’ perspective.  

 

1.3 Objective of The Study 

 

The objectives of this study are: 

i. to compare the three selected software testing tools in current market. 

This discusses about the features of GUI in software testing tools.  

ii. to find out the general features of GUI that must be considered to 

develop software testing tools, which it is not limited to certain 

organization or software. 

iii. to measure the usability of the selected software testing tools from 

users’ perspective. 

 

1.4 Scope of the study 

 

The scope of this study is to analyze the features of GUI in software 

testing tools for source code/program structures either static analyzer or 

dynamic analyzer. The software testing tools downloaded from Internet. It is 

also to measure the usability of tools from users’ perspective.   
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CHAPTER TWO 

 

LITERATURE REVIEW 

 
 
2.1 Software Testing Tool 

 

C.V. Ramamoorthy and S.F Ho  defined software testing tools is the 

programs that check the presence of certain software attributes which can be 

program syntax correctness, proper program control structures, proper 

module interface, testing completeness and so on. 

 

Automated software tools are tools designed to run programs and can 

also be made to aid programmers in system development. One major 

problem in dealing with large software system is the size. Automated tools 

can scan a large volume of source code and indicate questionable features to 

the human programmer (e.g unreliable program construct), and free the 

programmer from repetitive tasks. As a debugging aid, automated tools can 

be use to remove simple coding errors, and allow the programmer to 

concentrate on advance system check out. As an optimization tool, 

automated tools can indicate code section that merit detailed examination. 

Successful application of program correctness proofs to large software 

systems also depends on the automation generation of assertions by 

automated tools or theorem provers. It means that, automated tools allow a 
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small programming team to examine a large volume of code which is 

otherwise impossible [C.V Ramamoorthy and S.F. Ho]. 

Martin Wieczorek [2001] stated that the requirement for testing tools 

can be grouped into a number of different areas, including test planning and 

management, requirement analysis and test case generation, inspection and 

review, code quality analysis, functional testing, load and performance 

testing and web application testing.  

 

Bret Pettichord [2001], said that automating tests for a graphical user 

interface presents significant difficulties not found in character based 

interfaces, much less command line interfaces or programming interfaces 

(APIs). Graphical user interfaces tend to be made of complex components 

and tend to be constantly redesigned during the development process. 

Significant successes have been made in delivering test tools that are able to 

identify and manipulate graphical user interfaces. 

 

Professor Ben-Avi in his paper Software Testing Technology was 

categorized software quality assurance support tools in two categories. 

There are static and dynamic analysis tools. Most tool functions fall cleanly 

into one category or the other, but there are some exceptions like symbolic 

evaluation systems and mutation analysis system (which actually run 

interpretively). The main tools used in quality assurance static analyzers, 

code inspectors, standard enforcers, coverage analyzers, output 
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comparators, test file/data generators, test harness and test archiving 

systems. 

 

When the developers are deciding to use tools during testing phase, 

they should consider the quality factors to evaluate software testing tools. 

One of the software quality criteria is usability. Usability is an important 

aspect of software product. Usable systems are easy to learn, efficiency to 

use, not error-prone and satisfactory in use [Nielsen, 1993]. Usability brings 

many benefits. According to ISO/IEC 13407,  the benefits of usability 

include “ increased productivity, enhanced quality of work, improved user 

satisfaction, reductions in support and training costs and improved used 

satisfaction”. 

 

2.2 Features of GUI in software testing tools  

 

2.2.1 Features proposed by Elisabeth Hendrickson 

 

Elisabeth Hendrickson proposed the twelve features that are 

important in any good software testing tool are scripting language, user 

interface element identifiers, reusable libraries, outside libraries, abstract 

layers, distributed tests, file input/output, error handling, the debugger, 

source control, common line script execution and the user community. 

Summary of these features is shown in Table 2.1. 
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2.2.1.1 Scripting language 

 

A prerequisite to all the other features for software testing tool is that 

the tool must have a scripting language of some kind that contains the usual 

programmatic constructs. At the very least, it should enable to edit recorded 

scripts, support variables and data types, support arrays, lists, structures, or 

other compound data types, support conditional logic (IF and CASE 

statements), support loops (FOR, WHILE) also enable to create and call 

functions. 

 

2.2.1.2 User Interface (UI) element identifiers 

 

In order to write test scripts that actually test something, the test tool 

can identify the elements on tester UI as objects rather than trying to point 

to them by coordinate. The tool can identify the UI elements in a variety of 

representative windows. It is true that some UI elements aren’t really 

controls at all, just bitmaps that do something when you click on them. 

Software that uses UI elements that are bitmaps rather than real controls 

won’t behave well with any automated testing tool.  

 

2.2.1.3 Reusable libraries 

 

Software testing tools need to support reusable library to store 

function or subroutine that perform the search. The function library created 



 8 

to define the sequence of steps necessary to perform a search for testing an 

application. Each script calls the function. Any scripts created with the tools 

can easily call the functions that put in the library and the functions can take 

parameters.  

 

2.2.1.4 Outside libraries 

 

In addition to creating tester’s own libraries, you’ll often find it 

useful to access outside libraries. In Windows, .dll files are able to call. As 

an example, consider a client/server system built to work with a relational 

database. The software under test uses the database’s proprietary API 

(Application Program Interface). If the automated tests can use the same 

API, they can be more powerful. They can make checks the user interface 

doesn’t allow. For example, they can check that a changed value was 

actually written to the database, not just changed on the screen. They can 

check whether a transaction was correctly and completely logged, even if 

the UI gives no access to the log.  

 

In general, these tests can determine “pass” or “fail” more accurately 

than by checking the value through the user interface. If testing is doing on 

a Windows system, then the Windows API will be accessed. The Windows 

API enables you to get system information that would be difficult or 

impossible to obtain in any other way. For example, it’s very useful to be 
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able to get or set the value of a registry key from within the automated 

scripts. 

 

2.2.1.5 Abstract layers 

 

An “Abstract Layer” to define logical names for physical user 

interface elements. Some tools call this a “test map” or “GUI map” while 

others call it a “test frame.” The purpose of the abstract layer is to make it 

easier to maintain the tests. As an example, a login dialog box with fields 

for name and password. Within the program, the programmer named those 

fields “Name” and “Password.” An abstract layer is created to identify the 

fields as “Name” and “Password” and proceed to use those identifiers in all 

500 of the scripts. But with the next version of the software under test, the 

underlying identifiers of the name and password fields become “username” 

and “pword.” Instead of changing all 500 of the scripts, developer changes 

the UI identifiers in the abstract layer. Several test tools offer features, such 

as window recorders, specifically designed to support the creation of an 

abstract layer.  

 

2.2.1.6 Distributed tests 

 

If application is testing multi-user software, software testing tool 

need to be able to create tests that involve multiple simulated users. In a 

distributed test, the automated testing tool enables to specify the machine on 
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which to execute a given command. In launching a test on a remote 

machine, the remote machine executes that test from beginning to end. 

However, if the testing needs to coordinate on two different machines, then 

the testing to do more than launch a test and let it run. Thus, testing tools 

need to be able to create a test that waits for an action (such as locking a 

file) to be complete on the first machine before beginning an action (such as 

attempting to open the file) on the second machine. 

 

2.2.1.7 File I/O 

 

File I/O (input/output) means that the tool provides functions that 

enable you to open a file on the hard disk (usually an ASCII file) 

programmatically, read from it, write to it, and close it. File I/O functions 

are central to “data-driven test automation.” In a data-driven automated test, 

the script uses test data from a file to drive the test activity. Data-driven 

testing makes it possible to automate a large number of tests with a minimal 

amount of test automation code. For example, if the software under test 

needs to know which server to use, then it’s a good idea to specify the 

server name in an .ini file. Then the test server can changed without having 

to change the automated scripts.  

 

 

 

 


