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Abstract of thesis presented to Senate of Universiti Putra Malaysia in fulfilment of 
the requirements for the degree of Doctor of Philosophy 

 
MICROSTRUCTURE AND GIANT DIELECTRIC PERMITTIVITY OF  

TITANO-MANGANITE SYSTEMS 
 

By 
 

WALTER CHARLES PRIMUS 
 

October 2008 
 
Chairman:    Professor Abdul Halim Bin Shaari, PhD 
 
Faculty:         Science  
 
 
 
 
The microstructural and dielectric properties of La0.4Ba0.6-xCaxMn0.4Ti0.6-ySnyO3 (x = 

0.0, 0.2, 0.4, 0.6; 0.0 ≤ y ≤ 0.6) ceramic systems have been investigated. The samples 

were prepared using solid-state technique where calcinations was done at 950 °C for 

24 hours and sintered at 1300 °C for 3 hours after three times heating of 72 hours at 

1300 °C.  

 

Surface morphology study showed a well define grain and grain boundary and no 

changes in grain size when Ba ions substituted with Ca ions. However, the grains 

size becomes smaller from ~ 7 μm to ~ 1.5 μm as Sn ions were introduced into the Ti 

site of titano-manganite samples. At high Sn concentrations, the grain boundaries 

become smeared. The atomic percentage obtained from EDX analysis shows small 

deficits ± 0.05 with the calculated percentage. In XRD analysis, the La0.4Ba0.6-

xCaxMn0.4Ti0.6O3 samples with x = 0.0 and 0.2 are cubic structure (Pm-3m) and 

distorted to a tetragonal structure (I4mcm) as the composition of x = 0.4 and 0.6. 

Substituted Ti ions with Sn ions cause the samples structure change from tetragonal 

to orthorhombic (Pnma).    
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A huge dielectric permittivity values > 100,000 was obtained at lower frequency (10 

Hz) and at higher temperatures (200 ºC) for La0.4Ba0.6Mn0.4Ti0.6O3 and 

La0.4Ba0.4Ca0.2Mn0.4Ti0.6O3 samples in dielectric measurement. At 1 kHz, the 

permittivity of La0.4Ba0.6Mn0.4Ti0.6O3 compound is ~ 20,000 at 0 ºC and slightly 

increases to ~ 54,000 at 125 ºC with low loss tangent ~ 0.8. While for 

La0.4Ba0.4Ca0.2Mn0.4Ti0.6O3 compound, the permittivity at 1 kHz is ~ 56,000 at 50 ºC 

and increase to ~ 97,000 at 100 ºC with the loss tangent ~ 0.7. For 

La0.4Ba0.2Ca0.4Mn0.4Ti0.6O3 and La0.4Ca0.6Mn0.4Ti0.6O3 samples, the values of 

dielectric permittivity are ~ 10,000 over three order of frequency magnitude and also 

show thermal stability. However, the permittivity at 1 MHz is within 100 to 200 for 

all samples. The high permittivity values at low frequency are due to the grain 

boundary effect whereas the low permittivity values at high frequency are attributes 

from the bulk effect. Doping with Sn ions decreases the magnitude of grain boundary 

permittivity at low frequencies and increases the loss factor.  

 

A Debye-like polarization behaviour with dc conduction are observed in the master 

plot. The relaxation peak and the dc conductivity in this titano-manganite compound 

were explained due to the trap-controlled hopping mechanism since the sample is 

dominated by electronic carriers. In traps phenomenon, delayed electronic transitions 

make a significant contribution to the complex dielectric permittivity. However, the 

decreases of the grain boundary magnitude at low frequency as the Sn ions increased 

resulting in the formation of anomalous low frequency dispersion (ALFD). In 

equivalent circuit modeling, the electrical property of the samples has been 

represented by a series combination of quasi-dc response, conductance and high 

frequency capacitance in parallel. The proposed model is in consistent with the 
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outcome in complex impedance analysis and surface morphology observation 

consisting grains and grain boundaries.     

 

The conductivity of all samples obeys the empirical equations σ(ω) = σdc + Aωn. 

Each of the bulk and grain boundary response gives the shape of the empirical 

equation. The dc conductivity of the grain and grain boundary are fall in the range of 

semiconducting materials (~ 10-5 S/m to ~ 1 S/m from -100 ºC to 200 ºC). The 

analysis of conductivity reveals that the sample is p-type semiconductors with holes 

as the majority carriers. The increase of Sn ions increased the grain boundary 

conductivity causing overlapping with the bulk conductivity. The grain boundary 

region is more thermally activated than the bulk region where the activation energy 

of the grain boundary is in the range of 0.31 to 0.54 eV and 0.17 to 0.37 eV for the 

bulk. The activation energy obtained is consistent with an electron hopping 

mechanism.  
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MIKROSTRUKTUR DAN KETELUSAN DIELEKTRIK GERGASI BAGI 

SISTEM TITANO-MANGANITE   
 

Oleh 
 

WALTER CHARLES PRIMUS 
 

Oktober 2008 
 
Pengerusi:    Professor Abdul Halim Bin Shaari, PhD 
 
Fakulti:         Sains  
 
 
 

Kajian ke atas sistem seramik La0.4Ba0.6-xCaxMn0.4Ti0.6-ySnyO3 (x = 0.0, 0.2, 0.4, 0.6; 

0.0 ≤ y ≤ 0.6) telah dilakukankan bagi mengkaji mikrostruktur dan sifat 

dielektriknya. Penyediaan sampel menggunakan teknik keadaan pepejal dimana 

presinter dilakukankan selama 24 jam pada suhu 950 °C dan disinter selama 3 jam 

pada suhu 1300 °C selepas tiga kali dipanaskan dalam tempoh 72 jam pada suhu 

1300 °C.  

 

Hasil cerapan terhadap permukaan mikrostruktur menunjukan pembentukan butiran 

dan sempadan butiran sangat jelas dan tiada perubahan pada saiz butiran bila ion Ca 

mengantikan ion Ba. Walau bagaimanapun, saiz butiran tersebut menjadi semakin 

kecil daripada  ~ 7 μm ke ~ 1.5 μm apabila ion Sn dimasukan kebahagian Ti bagi 

sampel titano-manganite. Pada konsentrasi Sn tinggi, sempadan butiran telah lebur. 

Jumlah peratusan atom yang diperolehi melalui EDX analisis menunjukan sedikit 

kekurangan ± 0.05 dibandingkan dengan jumlah peratus pengiraan. Dalam analisis 

XRD, sampel La0.4Ba0.6-xCaxMn0.4Ti0.6O3 bagi x = 0.0 dan 0.2 mempunyai struktur 

kubik (Pm-3m) dan terherot ke struktur tetragonal (I4mcm) pada komposisi x = 0.4 
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dan 0.6. Penggantian ion Ti dangan ion Sn menyebabkan struktur sampel berubah 

daripada tetragonal ke orthohombik (Pnma). 

 

Nilai ketelusan dielektrik yang besar > 100,000 telah diperolehi pada frekuensi 

rendah (10 Hz) dan pada suhu tinggi (200 ºC) bagi sampel La0.4Ba0.6Mn0.4Ti0.6O3 dan 

La0.4Ba0.4Ca0.2Mn0.4Ti0.6O3 dalam pengukuran dielektrik.  Pada 1 kHz, ketelusan bagi 

sebatian La0.4Ba0.6Mn0.4Ti0.6O3 ialah ~ 20,000 pada 0 ºC dan meningkat ke ~ 54,000 

pada 125 ºC dengan kehilangan tangent ~ 0.8 yang rendah. Manakala bagi sebatian 

La0.4Ba0.4Ca0.2Mn0.4Ti0.6O3, ketelusan pada 1 kHz ialah ~ 56,000 pada 50 ºC dan 

meningkat ke ~ 97,000 pada 100 ºC dengan kehilangan tangen ~ 0.7. Bagi sample 

La0.4Ba0.2Ca0.4Mn0.4Ti0.6O3 dan La0.4Ca0.6Mn0.4Ti0.6O3, nilai ketelusan dielektrik ialah 

~ 10,000 sehingga tiga tertib bagi jarak frekuensi dan menunjukan kestabilan terma. 

Walau bagaimanapun, ketelusan pada 1 MHz ialah diantara 100 ke 200 bagi semua 

sampel. Nilai ketelusan yang tinggi pada frekuensi rendah adalah kesan sempadan 

butiran manakala nilai ketelusan yang rendah pada frekuensi tinggi adalah kesan sifat 

butiran. Penggantian dengan ion Sn telah merendahkan nilai ketelusan sempadan 

butiran di frekuensi rendah dan meningkatkan faktor kehilangan. 

 

Sifat seperti pengutuban Debye berserta pengkonduksian arus terus boleh 

diperhatikan dalam plot penormalan. Puncak relaxsasi dan kekonduksian pada 

sebatian titano-manganis dijelaskan meggunakan mekanisma perangkap loncatan 

terkawal bagi sampel yang didominasi oleh pembawa elektronik. Dalam fenomena 

perangkap, penangguhan peralihan elektronik memberikan sumbangan ketara pada 

komplex ketelusan dielektrik. Walau bagaimanapun, penurunan nilai sempadan 

butiran kepada ~ 100 dengan peningkatan ion Sn, menyebabkan pembentukan 
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penyebaran frekuensi rendah yang luarbiasa (ALFD). Dalam model litar elektrik, 

sifat elektrik telah diwakilkan dengan gabungan sesiri bagi tindakbalas separa dc, 

konduktan dan kapasitan frekuensi tinggi secara selari. Model yang dicadangkan 

adalah konsisten dengan hasil analisis komplek impedens dan  cerapan morfologi 

permukaan yang terdiri daripada butiran dan sempadan butiran. 

 

Kekonduksian bagi semua sampel mematuhi persamaan empirikal σ(ω) = σdc + Aωn. 

Setiap satu tindakbalas bagi butiran dan sempadan butiran menghasilkan bentuk 

seperti persamaan emperikal. Kekonduksian bagi butiran dan sempadan butiran jatuh 

dalam lingkungan bahan semikonduktor (~ 10-5 S/m ke ~ 1 S/m daripada -100 ºC ke 

200 ºC). Analysis bagi jenis konduktiviti menunjukan bahawa sempel tersebut adalah 

semikonduktor jenis-p dengan lohong sebagai pembawa mejoriti. Peningkatan ion Sn 

juga meningkatkan kekonduksian sempadan butiran menyebabkan pertindihan 

dengan kekonduksian butiran. Bahagian sempadan butiran lebih teraktif secara terma 

berbanding bahagian butiran di mana tenaga pengaktifan bagi sempadan butiran ialah 

dalam julat 0.31 hingga 0.54 eV dan 0.17 hingga 0.37 eV bagi butiran. Tenaga 

pengaktifan yang diperolehi adalah konsisten dengan mechanisma elektron loncatan. 
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