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The structure, dynamics and flexibility of thermoalkalophilic lipases of Bacillus 

stearothermophilus L1 (L1 lipase) and Geobacillus zalihae strain T1 (T1 lipase) were 

successfully explored through molecular dynamics simulation (MD) technique. MD 

simulations at extremely high temperature in explicit solvent were carried out to 

understand how a thermoalkalophilic lipase starts to unfold at high temperature. The 

simulations were performed at 400 K and 500 K in addition to a control simulation at 300 

K for a total of 12.0 ns. The high stability of both global three-dimensional (3D) 

structures at control simulation was confirmed by a good correlation between 

crystallographic experimental and simulated B-factors.  
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The systematic flexibility and dynamics of both systems were analyzed using the time-

averaged root mean square fluctuations (RMSf) and the root mean square deviations (Cα-

RMSd). Both systems showed a very similar flexibility and dynamics at 300 K and 400 K 

while at 500 K, L1 lipase showed more flexibility than T1 lipase. The average RMSf and 

the Cα-RMSd results for both systems were in a good agreement, indicating that 

thermostability was correlated with higher flexibility rather than increased rigidity in our 

model systems.  

 

Both L1 lipase and T1 lipase structures maintained their global 3D structures and did not 

undergo any significant unfolding process at 400 K, while both structures lost their 

structures partially at 500 K. The results clearly illustrated that the N-terminal moiety of 

both model systems showed high flexibility and dynamics during thermal unfolding 

simulations which preceded and followed by clear structural changes in two specific 

regions; the small extra domain (consisting of helices α3 and α5, strands β1 and β2, and 

connecting loops) and the main catalytic domain or core domain (consisting of helices 

α6- α9 and connecting loops which are located above the active site of the enzyme).  

 

The two domains of both systems interact with each other through a Zn2+-binding 

coordination with Asp61 and Asp238 from the core domain and His81 and His87 from 

the small domain via tight interactions. Interestingly, the His81 and His87 were among 

the highly fluctuated residues at high temperatures while Asp61 and Asp238 did not 

show any significant fluctuations. The results indicated that these tight interactions 



 iv

became very weak at high temperatures which presumably contributed to the 

thermostability of both enzymes.  

 

The results also suggested that the initial steps in the unfolding of a thermoalkalophilic 

lipase may involve early loss of structure in the small extra domains of these enzymes 

followed by core opening. Therefore, the N-terminal moiety and the small domain of 

both enzymes are critical regions to thermostability and they can be a potential target for 

stability enhancement. 
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Struktur, dinamik dan fleksibiliti bagi lipase termoalkalofilik Bacillus stearothermophilus 

L1 (Lipase L1) dan Geobacillus zalihae strain T1 (Lipase T1) telah berjaya diselidiki 

melalui teknik simulasi dinamik molekul (MD). Simulasi MD pada suhu yang sangat 

tinggi di dalam pelarut eksplisit telah dijalankan untuk memahami bagaimana lipase 

termoalkalofilik mula untuk terurai pada suhu tinggi. Simulasi telah dijalankan pada 400 

K and 500 K sebagai tambahan  kepada simulasi kawalan pada 300 K selama 12.0 ns. 

Kestabilan tinggi untuk kedua-dua struktur tiga-dimensi global pada simulasi kawalan 

telah disahkan melalui korelasi yang baik antara kristalografi dan simulasi faktor-B. 
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Kelenturan sistematik dan dinamik untuk kedua-dua sistem telah dianalisis menggunakan 

purata masa “fluktuasi puncamin kuasa dua” (RMSf) dan “sisihan min kuasa dua”(Cα-

RMSd). Kedua-dua sistem menunjukkan persamaan dari segi kelenturan dan dinamik 

pada 300 K dan 400 K manakala pada 500 K, lipase L1 menunjukkan lebih lentur 

daripada lipase T1. Keputusan purata RMSf dan Cα-RMSd untuk kedua-dua sistem 

adalah dalam persetujuan yang baik, menunjukkan bahawa kestabilan terma berkait rapat 

dengan kelenturan tinggi berbanding dengan peningkatan ketegaran untuk model sistem 

ini. 

 

Kedua-dua struktur lipase L1 dan lipase T1 mengekalkan struktur global tiga dimensi dan 

tidak melalui mana-mana proses peleraian yang ketara pada 400 K, manakala kedua-dua 

lipase kehilangan separa struktur asal masing-masing pada 500 K. Keputusan ini jelas 

menunjukkan bahawa moieti N-terminal untuk kedua-dua sistem mempunyai kelenturan 

dan dinamik yang tinggi semasa simulasi peleraian terma sebelum preubahan struktur. Ini 

diikuti dengan perubahan struktur yang jelas di dalam dua kawasan; di dalam domain 

kecil tambahan (terdiri daripada heliks α3 dan α5, jalur β1 dan β2 dan gelung 

penyambung) dan domain pemangkinan utama ataupun domain teras (terdiri daripada 

heliks α6-α9 dan lengkok bersambung yang terletak di atas tapak aktif enzim tersebut). 

 

Dua domain tersebut bagi kedua-dua sistem bersaling tindak antara satu sama lain 

melalui koordinasi ikatan Zn2+ bersama Asp61 dan Asp238 daripada domain teras dan 

His81 dan His87 daripada domain kecil melalui saling tindahan kuat. Yang menariknya, 

His81 dan His87 adalah antara residu berkelenturan tinggi pada suhu tinggi manakala 
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Asp61 dan Asp238 tidak menunjukkan kelenturan yang ketara. Keputusan itu 

menandakan interaksi yang rapat menjadi terlalu lemah pada suhu tinggi yang mungkin 

menyumbang kepada kestabilan terma kedua-dua enzim. 

 

Keputusan ini juga mencadangkan bahawa langkah awal dalam penguraian sesuatu lipase 

termoalkafilik mungkin melibatkan kehilangan struktur awal di dalam domain kecil 

tambahan dalam enzim tersebut dan diikuti dengan pembukaan teras. Oleh itu, moieti N-

terminal dan domain kecil bagi kedua-dua enzim adalah kawasan kritikal untuk 

kestabilan terma dan berpotensi menjadi sasaran utama bagi meninggikan kestabilan 

kedua-dua enzim tersebut. 
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CHAPTER 1 

INTRODUCTION 

 
 
 
 
 

Comparative structural studies of enzymes have resulted in new insights into protein 

stability, protein folding and unfolding, and structure-function relationships (Karlstrom, 

2006). In addition to the basic knowledge gained, this research area is important for a 

more detailed understanding and treatment of several diseases related to protein stability 

(Dobson, 2006), development of rational protein engineering, and biotechnological use of 

enzymes (Egorova & Antranikian, 2005; Eisenthal et al., 2006).  

 

Biocatalysts are catalysts of biological origin, which are very important, because they are 

highly specific, highly active under mild conditions and biodegradable (Polastro, 1989; 

Benkovic & Ballesteros, 1997). Thus, there is a strong tendency to replace conventional 

chemical reactions and develops new processes using this novel type of catalysts (Illanes, 

2000). Despite the obvious advantages; biocatalysts are fragile molecules. Therefore, 

biocatalyst stability and stabilization is a central issue of biotechnology nowadays, 

especially at high temperatures (Adamczak & Krishna, 2004). 

 

Protein stability is a key factor to determine the economic feasibility of applying an 

enzyme in an industrial process (Eijsink et al., 2004). Thermostability allows a higher 

operation temperature, which is clearly advantageous because of a higher reactivity, 
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higher stability, higher process yield, lower viscosity and fewer contamination problems 

(Fields, 2001). There are many types of potentially stabilizing interactions in 

thermoenzymes. Identification and understanding of specific factors contributing to the 

thermostability of these organisms has been a longstanding challenge (Mozhaev, 1993; 

Querol et al., 1996; Kumar et al., 2000; Vieille & Zeikus, 2001; Beck et al., 2006). 

However, no single preferred mechanism for stabilization of thermoenzymes has 

appeared (Fitter & Herble, 2000).  

 

Computer simulation techniques have become very important tools for understanding and 

exploring the physical basis of the structure and function of biomacromolecules. In a 

theoretical study the objective is to create a simplified model of a real physical system in 

order to reproduce known structural changes and dynamics behaviour of the system under 

study. The application of computer simulation in the structural and dynamics studies of 

proteins and understanding the mechanisms of protein folding and unfolding at atomic 

details has been the subject of many research for several years (Karplus & Sali, 1995; 

Colombo, 2004; Daggett, 2006).  

 

Molecular dynamics (MD) is a powerful computer simulation technique to investigate 

dynamics properties of a protein in atomic detail. Both simplified and all-atom level MD 

simulation are common computational methods in this area (Brooks, 1998). All-atom 

level MD simulations with high resolution in time and space are more preferred (Daggett, 

2006). It gives a detailed comparison between energetic and structural properties of a 

protein at various temperatures and provides a large amount of information which is not 
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directly accessible from laboratory experiment (Mark & van Gunsteren, 1992; van 

Gunsteren & Mark, 1992; Beck & Daggett, 2004).  

 

It has been shown that a small set of five to ten MD simulations are sufficient to capture 

the average properties of proteins (Day & Daggett, 2005). The early view of unfolded 

proteins as extended polypeptide chains has changed into a more complex picture. The 

current view of an unfolded state is an ensemble of partially folded conformers of the 

protein, where the extent of unfolding depends on the denaturing conditions (Floriano et 

al., 2007). Proteins begin to unfold because of the increased intramolecular motions 

caused by increasing temperature (Liu & Wang, 2003). In order to simulate unfolding of 

a protein, we performed the MD simulations at high temperatures for two reasons. First, 

there is a large difference between the experimental timescale for folding that can be 

achieved with available computer power. Secondly, unfolding occurs from the best 

characterized state of a protein, the native state (Fersht & Daggett, 2002).  

 

The overall unfolding pathway does not change due to high temperatures and use of high 

temperatures will just speed up the kinetics (Day et al., 2002; Marianyaganam & Jackson, 

2004; Daggett, 2006). Since the overall pathway of unfolding is independent of 

temperature, high-temperature MD simulations give an accelerated but still relevant view 

of the unfolding process (Larios et al., 2004). Some of the well studied systems include 

barnase (Caflisch & Karplus, 1995), chymotrypsin inhibitor 2 (Li & Daggett, 1996), src 

SH3 domain (Tsai et al., 1999), Staphylococcal protein A (Alonso & Daggett, 2000), 

EcDHFR (Sham et al., 2002), and SNase (Smolin & Winter, 2006). 


