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By 

 

MASNIZA BT MOHAMED @ MAHMOOD 

 

May 2006 

 

 

Chairman : Ling Tau Chuan, PhD 

 

Faculty : Engineering 

 

The adsorption of a model protein Bovine Serum Albumin (BSA) from unclarified 

feedstock containing M13 bacteriophage and its host cells has been explored. The 

matrix used was Streamline Diethylaminoethyl (DEAE) as an anion exchanger 

(ρ=1.2 g/cm
3
) supplied by Amersham Pharmacia Biotechnology. The UpFront 

Chromatography column (20 mm i.d) was used as the Expanded Bed Adsorption 

(EBA) contactor. In this study, M13 bacteriophage carrying an insert (C-WSFFSNI-

C) was propagated in bacteria Escherichia coli ER2738.  

 

Batch adsorption experiment method using Streamline DEAE as adsorbate was also 

done to determine the influence in the presence of M13 Bacteriophage and its host 

cell (E. coli) concentrations at various biomass (0%-15% w/v). The maximum 

protein adsorption of Streamline DEAE was investigated using batch adsorption. The 

maximum protein adsorption capacity, qmax, and the dissociation constant, Kd were 

determined. Moreover, the operating parameters of EBA operation such as the 
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degree of the bed expansion and dynamic binding capacity of different settled bed 

heights under various biomass concentrations were investigated. In this study, the 

maximum protein binding capacity of Streamline DEAE, qmax was achieved at 

230.03 mg/ml adsorbed. At the lowest M13 bacteriophage and its host cells 

concentration (5% w/v), the dissociation constant, Kd, of this operation is 36.87 

mg/ml. For the batch binding experiment using 10% biomass concentration, qmax of 

130.01 mg/ml and a Kd of 16.12 mg/ml was determined. Further increase of the 

biomass concentration to 15% has caused the qmax of the adsorbent reduced to half of 

that 5% (w/v) biomass concentration, and the Kd determined is only 9.45 mg/ml. It 

can be concluded that the higher percentage of M13 bacteriophage and its host cells 

present in the feedstock, the lower qmax can be achieved. From the analysis of 

breakthrough curve at 10% which C/Co= 0.1, the dynamic binding capacities of 

various settled bed height under various biomass concentrations were determined. 

The value varies between the three models (10 cm, 13 cm and 15 cm settled bed 

height column) and the highest dynamic binding capacity was obtained at the lowest 

percentage of M13 bacteriophage and its host cells in the feedstock at the highest 

settled bed height (15 cm). 
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Penjerapan model protein, Bovine Serum Albumin (BSA) daripada bahan utama 

yang tercemar mengandungi Bakteriofaj M13 dan juga sel perumahnya telah dikaji. 

Matrik yang digunakan ialah Streamline Diethylaminoethyl (DEAE), (ρ=1.2 g/m
3
) 

yang boleh diperolehi dari Amersham Pharmacia Biotechnology. Kolum UpFront 

(20 mm i.d) digunakan sebagai kolum untuk Penjerapan Lapisan Terkembang. 

Dalam kajian ini, M13 bakteriofaj yang membawa sisipan (C-WSFFSNI-C) telah 

dibiakkan di dalam bakteria Escherichia coli ER2738. 

 

Ujikaji penjerapan berkumpulan juga dilakukan menggunakan Streamline DEAE 

untuk mengesan pengaruh kepekatan bakteriofaj M13 dan sel perumahnya (E. coli) 

di dalam kepekatan biomas yang berbeza (0%-15% w/v). Penjerapan maksima 

protein dilakukan menggunakan pejerapan berkelompok. Kapasiti penjerapan 

maksima, qmax dan juga nilai tetap pelekangan, Kd dikenalpasti. Selain daripada itu, 



 

vi 

parameter berfungsi untuk operasi EBA (Penjerapan Lapisan Terkembang) seperti 

darjah pengembangan lapisan dan juga kapasiti ikatan dinamik pada kepekatan 

biomas dan tinggi lapisan termendak yang berbeza. Dalam kajian ini, ikatan protein 

maksima untuk Streamline DEAE, diperolehi ialah 230.03 mg/ml. Pada kepekatan 

bakteriofaj M13 dan sel perumah yang paling rendah, nilai tetap pelekangan, Kd 

ialah 36.87 mg/ml. Untuk penjerapan berkelompok meggunakan 10% kepekatan 

biomas, qmax ialah 130.1 mg/ml dan nilai Kd ialah 16.12 mg/ml diperolehi. Dengan 

menaikkan nilai kepekatan biomas kepada 15% telah menyebabkan qmax  penjerap 

berkurang separuh daripada 5% kepekatan biomas, nilai Kd yang kecil iaitu 9.45 

mg/ml. Dapat disimpulkan apabila terdapat semakin tinggi peratus bakteriofaj M13 

dan sel perumahnya di dalam stok, semakin kecil nilai qmax yang diperolehi. Analisa 

lengkung kemajuan pada 10% iaitu pada C/Co=0.1, kapasiti ikatan dinamik dari 

kepelbagaian kepekatan biomas diperolehi. Nilainya berubah di antara ketiga-tiga 

model (10 cm, 13 cm dan 15 cm tinggi lapisan termendak) dan nilai kapasiti dinamik 

yang tertinggi diperolehi apabila peratusan terkecil bakteriofaj M13 dan sel 

perumahnya berada di dalam kolum 15 cm tinggi lapisan termendak. 
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 CHAPTER 1 

 

INTRODUCTION 

 

1.1 Downstream Processing in Biotechnology 

 

 

The completion of the human genome will lead to an unprecedented demand for 

the production of human proteins for diagnosing and treating disease and 

deficiencies. Recombinant DNA technology can provide for the large-scale 

production of human proteins using various host organisms (bioreactors) ranging 

from E. coli bacterial cells to transgenic farm animals (Harvey et al., 2002). The 

exciting revolution within the field of genetic engineering and recombinant DNA 

technology has continued to extent the variety of the protein products which has 

generated new challenges in the design and development of novel purification 

(Chi, 2000). 

 

Hence, the downstream processing of these recombinant proteins from various 

sources is gaining importance. Downstream processing is the general term used to 

describe the separation process for recovery of biological products (Liddell, 

1994). 
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1.1.1 Problems Associated With Conventional Downstream Processing 

Proteins vary from each other in size, shape, charge, hydrophobicity, solubility and 

biological activity. These differences of the protein itself were used to separate it in 

complex solution. Conventional methods of downstream processing involve a number 

of unit operations performed in a defined sequence. Generally, the sequences of 

conventional downstream processing are clarification, concentration, purification and 

final product polishing. In the clarification step, the common methods used to separate 

the solids in soluble components from the cultivation broth or the cell homogenate are 

microfiltration (MF) and centrifugation (CF). However, both of the techniques show 

limitations in practice (Anspach et al., 1999). 

 

The cell and cell debris form a particle layer on top of the membrane surface that not 

only leads to decrease of transmembrane flux but also to a partial rejection of proteins 

in micro filtration techniques. The extent of the rejection depends on the molecular 

mass of the proteins which is related to the dynamic membranes and also due to the 

ultrafiltration type characteristic (Datar and Rosen, 1996; Anspach et al., 1999). The 

high shear forces which may influence the shear sensitive cells generates by 

recirculation of the feedstock needed a high input of energy pumping (Chi, 2000). 

 

Furthermore, the continuous centrifuges employed in the large scale clarification 

processes are not as effective as batch centrifuges that used in the laboratory scale. The 

broth usually needs to be centrifuged twice or an additional microfiltration step is 

incorporated (Anspach et al., 1999). The shear sensitive cells like mammalian cells may 
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be damage by the shear stress induced by the turbulence during the feedstock 

application into the centrifuge and the strong centrifugal force generated during the 

operation (Chi, 2000). The damage of these cells may release protease or other 

contaminant proteins that may cause the product degradation or process complication in 

the subsequent separation steps. 

 

Most of the products of biotechnology are proteins and these proteins must be prepared 

in a very pure form. The degree of purity required by the injectable protein is set by the 

Food and Drug Administration (FDA). In general, any contaminants can be detected 

must be removed from the recovered protein. 

  

The process time for the conventional recovery process is typically very long which 

may adversely affect the stability of the labile proteins. The stability of the proteins is 

normally gained when it was adsorbed onto a solid support and it is become an 

advantage to position the primary adsorption process as early as possible in a recovery 

process (Morton and Lydiatt, 1994; Chi, 2000). 

 

The direct adsorption of the target protein from a particulate-containing feedstream is 

an approach to achieve this objective. Over the years the method of expanded bed 

chromatography has emerged to address this issue. By expanding an adsorbent bed with 

upward flow of the feedstream, bioparticulates (cells, cell debris, organelles etc.) can 

pass relatively unimpeded through the enhanced bed voidage without seriously 
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constraining the adsorption of target products to the stationary phase (Hjorth, 1997; 

Ling et al., 2005).  

 

Typically the purification of compounds from particle-containing crude liquids involves 

different pre-treatment steps such as centrifugation and/or microfiltration prior to 

chromatography. The direct adsorption from untreated crude liquids offers a significant 

decrease in time and costs due to reduction in the overall number of purification steps. 

In this case, expanded bed adsorption (EBA) is the method of choice compared to 

traditional processes. 

 

EBA is an integrated technology which can be used to minimize the separation step by 

combining clarification, concentration and initial purification into one unit operation. 

The combination of these steps into one unit operation of capturing target molecules 

from crude feed-stock may reduce product degradation and avoid bio-product handling 

problems. EBA is postulated to be a versatile tool that can be applied on fermentation 

broth which is commonly used as source materials. 
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1.2 Project Aims and Objectives 

The present study was undertaken to investigate the effect of M13 bacteriophage and E. 

coli in adsorption of bovine serum albumin (BSA) in expanded bed chromatography. 

Moreover, this study was also carried out to investigate the operating parameters such 

as the expansion bed height, the increase of biomass concentration and the flow rate of 

buffer distribution by using the EBA column. The study was carried out to investigate 

the performance of UpFront Column (20 mm i.d) from Amersham Pharmacia 

Biotechnology in protein purification. Batch adsorption experiment method using 

Streamline Diethylaminoethyl (DEAE) as adsorbent was also done to investigate the 

influence of E. coli biomass concentrations (0-15% w/v biomass) on BSA adsorption 

capacity. Besides, the maximum protein adsorption capacity and dissociation constant 

of DEAE adsorbent were determined in this present study.  

 

The analysis of batch adsorption was done using Langmuir’s adsorption isotherm. The 

stability of fluidized beds was determined by measuring the degree of expansion in 

EBA chromatography system and the dynamic binding capacity was obtained from the 

breakthrough curve study. 
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1.2.1 Objectives  

The main objectives of this project were: 

1. To investigate the performance of Streamline Diethylaminoethyl (DEAE) as 

anion exchanger in adsorption of a model BSA protein from unclarified E. coli 

feedstock containing M13 bacteriophage. 

2. To investigate the effect of settled bed height on the performance of UpFront 

Column (20 mm i.d) in protein purification process. 

3. To investigate the effect of increasing biomass concentrations on the protein 

adsorption performance in EBA direct recovery process. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Bacteriophage 

 

 

Figure 2.1: Illustration of a bacteriophage (www.phage.com) 

 

In 1921, Frederick Twort  and Felix d'Herelle  discovered the viruses that infect 

bacteria, and they named it as bacteriophages (eaters of bacteria) (Adams, 1959). In the 

1930s and subsequent decades, pioneering virologists such as Luria, Delbruck and 

many others utilized these viruses as model systems to investigate many aspects of 

virology, including virus structure, genetics, replication, etc. Bacteriophages, viruses 

that prey upon bacteria, typically attack only a single bacterial strain. Bacteriophage 

virus infects bacteria and sometimes destroys them by causing cell lysis, or dissolution 

of the cell. Bacteriophages, or phages, have a head composed of protein, an inner core 

http://www-micro.msb.le.ac.uk/109/Twort.jpg
http://www-micro.msb.le.ac.uk/109/dHerelle.jpg

