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Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in 
fulfilment of the requirements for the degree of Doctor of Philosophy 
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CATALYST FOR PARTIAL OXIDATION OF N-BUTANE 
  

By 
 

TANG WEN JIUNN 
 

August 2008 
 

Chairman: Professor Taufiq Yap Yun Hin, PhD, CChem, MRSC (UK)  
 
Faculty: Science 
 

Vanadium phosphate catalyst is well known for the selective oxidation of n-butane to 

maleic anhydride process. In this study, the behavior of oxygen species in vanadium 

phosphate catalysts was investigated using temperature programmed analyses. 

Besides, the effects of Mo and Te dopants addition and mechanochemical treatment 

also have been studied. A new method to synthesis VOPO4·2H2O using milling 

technique (mechanosynthesis) also included in the study. The catalysts were 

synthesized by calcining the precursor, VOHPO4·0.5H2O in a flow of n-butane in air 

(0.75% n-butane in air) for 16 h at 733 K. Precursor was obtained by reduction of 

VOPO4·2H2O using iso-butyl alcohol. The physico-chemical properties of the 

catalysts were characterized by using x-ray diffraction (XRD), BET surface area 

measurement, redox titration, inductively coupled plasma-atomic emission 

spectroscopy (ICP-AES), scanning electron microscopy (SEM) and temperature 

programmed analyses. The catalytic properties of the selected catalysts were carried 

out by using temperature programmed reaction (TPRn) and on-line microreactor 

system. A comparison between the fresh and used catalysts in aerobic and anaerobic 

condition gave the better understanding about the lattice oxygen species which took 
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part in the selective oxidation. It was found that, certain amount of O2- species which 

associated with V5+ plays an important role in selectivity for maleic anhydride 

because no O2- species was detected by temperature programmed reduction (H2-

TPR) for the used catalyst in anaerobic condition. This result also supported by 

TPRn profile for the post O2-desorbed catalyst where the catalyst with only O- 

species gave no significant selectivity compared to catalyst with both oxygen species 

(O2- and O-). However, deleterious effect was observed for catalysts with high 

number of V5+ species (catalysts from mechanochemically treated doped precursors). 

High amount of O2- species was obtained by H2-TPR for these catalysts. However, 

this oxygen species only promotes total oxidation as only CO2 was observed in n-

butane oxidation. Introduction of Mo and Te into the catalyst precursor did not 

change the phase of the final catalysts. However the doped catalysts consist only 

platelets particles and no rosette clusters morphology as usually observed for 

dihydrate route catalyst. Mechanochemical treatment on the doped precursors did not 

change the VOHPO4·0.5H2O phase of the precursors but increased the number of β-

VOPO4 in the catalysts stage. Besides that, the surface area reduced significantly and 

the morphology also changed from platelets to blocky shape. According to the TPRn 

results, all the catalysts from the doped precursor gave higher conversion compared 

to undoped counterpart. However, the catalysts from mechanichemically treated 

doped precursors have low selectivity because no intermediate products were 

observed. A new method of VOPO4·2H2O preparation was successfully carried out 

using mechanosynthesis method. The product synthesized (VOPO4·2H2O) in 2 h at 

1400 rpm using agate materials has lower crystallinity compared to the refluxed 

counterpart. The surface area for the catalyst produced from the mechanosynthesized 

VOPO4·2H2O was slightly lower than conventional catalyst but increased after the 
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precursor was mechanochemically treated prior calcination step. Meanwhile, the total 

oxygen removed for the catalysts from mechanosynthesized VOPO4·2H2O was lower 

compared to conventional catalyst. 
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Mangkin vanadium fosfat terkenal dengan process pengoksidaan terpilih n-butana 

kepada maleik anhidrida. Dalam kajian ini, sifat-sifat spesis oksigen dalam mangkin 

vanadium fosfat telah dikaji menggunakan analisis suhu terprogram. Selain itu, 

kesan-kesan daripada dopan Mo dan Te serta rawatan mekanokimia turut dikaji. 

Kaedah baru dalam sintesis VOPO4·2H2O dengan menggunakan teknik kisaran 

(mekanosintesis) juga disertakan dalam kajian ini. Mangkin-mangkin telah disintesis 

dengan mengkalsinkan prekurser, VOHPO4·0.5H2O dalam aliran n-butana dalam 

udara (0.75 % n-butana dalam udara) selama 16 j pada 733 K. Prekurser disintesis 

dengan menurunkan VOPO4·2H2O menggunakan alkohol iso-butil. Sifat-sifat fizikal-

kimia mangkin telah dicirikan dengan menggunakan pembelauan sinar-X (XRD), 

pengukuran luas permukaan BET, pentitratan redox, plasma gandingan teraruh-

spektoskopi pancaran atom (ICP-AES), mikroskopi electron imbasan (SEM) dan 

analysis-analysis suhu terprogram. Sifat pemangkinan untuk mangkin terpilih telah 

dijalankan dengan menggunakan reaksi suhu terprogram (TPRn) dan sistem rektor 

mikro on-line. Perbandingan di antara mangkin segar dan mangkin terpakai dalam 

keadaan aerobik dan anaerobik memberikan pemahaman yang lebih baik berkenaan 
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spesis oksigen kekisi yang memainkan peranan dalam pengoksidaan terpilih. 

Didapati bahawa sejumlah spesis O2- yang dikaitkan dengan V5+ memainkan peranan 

penting dalam selektiviti kepada maleik anhidrida kerana tiada spesis O2- dikesan 

oleh penurunan suhu terprogram (H2-TPR) untuk mangkin terpakai dalam keadaan 

anaerobik. Keputusan ini disokong oleh profil TPRn untuk mangkin selepas 

penyahjerapan-O2 di mana mangkin yang mempunyai spesis O- memberikan 

selektiviti yang tidak siknifikan berbanding dengan mangkin yang mempunyai 

kedua-dua spesis oksigen (O2- and O-). Walaubagaimanapun, kesan buruk telah 

diperhatikan untuk mangkin dengan jumlah spesis V5+ yang tinggi (mangkin dari 

prekurser didop yang dirawat secara mekanokimia). Amaun spesis O2- yang tinggi 

didapati oleh H2-TPR untuk mangkin-mangkin tersebut. Walaubagaimanapun, spesis 

oksigen ini mempromosikan pengoksidaan lengkap di mana hanya CO2 diperhatikan 

dalam pengoksidaan n-butana. Pengenalan Mo dan Te ke dalam prekurser mangkin 

tidak mengubah fasa pada mangkin. Walaubagaimanpun, mangkin-mangkin yang 

didop hanya mengandungi partikel kepingan dan tiada morfoloji kluster ros yang 

selalu diperhatikan untuk mangkin dari laluan dihidrat. Rawatan mekanokimia pada 

prekurser yang didop tidak mengubah fasa VOHPO4·2H2O prekurser tetapi 

menambahkan bilangan β-VOPO4 dalam peringkat mangkin. Selain itu, luas 

permukaan berkurangan secara siknifikan dan morfologi juga berubah dari kepingan 

ke bentuk blok. Menurut keputusan TPRn, semua mangkin dari prekurser didop 

mempunyai penukaran yang lebih tinggi berbanding mangkin yang tidak didop. 

Walaubagaimanapun, mangkin-mangkin dari prekurser didop dirawat secara 

mekanokimia mempunyai selektiviti yang rendah kerana tiada produk pertengahan 

yang dikesan. Kaedah baru penghasilan VOPO4·2H2O telah berjaya dilaksanakan 

dengan menggunakan kaedah mekanosintesis. Produk (VOPO4·2H2O) disintesis 
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dalam 2 j pada 1400 ppm menggunakan bahan agate mempunyai tahap kristal yang 

rendah berbanding yang direfluks. Luas permukaan mangkin dari VOPO4·2H2O 

mekanosistesis kurang sedikit berbanding mangkin konvensional tetapi meningkat 

selepas prekurser dirawat secara mekanokimia sebelum langkah pengkalsinan. 

Semetara itu, jumlah oksigen yang dikeluarkan dari mangkin dari VOPO4·2H2O 

mekanosintesis lebih rendah berbanding mangkin konvensional.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Catalysis in General 

 

In general, catalyst is a substance that increases the rate of a reaction (Atkins and 

Paula, 2002). It happens by introducing new pathways with lower Gibbs activation 

energy, ∆G as shown in Figure 1.1. Although the activation energy is much lower 

than the uncatalyzed reaction, the Gibbs energy of overall reaction, ∆Gө remain the 

same (Shriver and Atkins, 2001). It is important that the product is released in a 

thermodynamically favorable step.  

                      

Figure 1.1. Schematic representation of the activation energy between catalyzed 
and uncatalyzed reaction (Shriver and Atkins, 2001) 
 

 

 



A good catalyst should has three important criteria (Shriver and Atkins, 2001 and 

Atkins and Paula, 2002): 

i) Activity 

An active catalyst should has a strong chemisorption ability in order to attract 

reactant. However if it is too strong, the activity declines either because other 

reactants cannot react with the adsorbate or because the adsorbate molecules 

block the active sites thus prevent further reaction.  

 

ii) Selectivity 

A selective catalyst should produce high percentage of desire product with 

minimum amount of side products. It is economically important because 

highly selective catalyst reduce the consumption of reactants thus reduce the 

operation cost. 

 

iii) Life time 

A catalyst must survive through a large number of cycles. However, side 

reactions or presence of impurities in the reactants might deactivate the 

catalyst. 

 

1.2 Selective Heterogeneous Oxidation Catalysis 

 

Selective heterogeneous oxidation catalysis is playing an important role to the well 

being of society since it produces about 25% of the most important industrial organic 

chemicals and intermediates such as acrolein, maleic anhydride, ethylene and 

phthalic anhydride to be used in the manufacture of industrial products and consumer 
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goods (Grasselli, 2002). A desirable selective oxidation process must produce the 

desired products in high selectivity and high yield. This is a challenging task where 

the desired products are produced instead of carbon monoxide or dioxide, which are 

total combustion products and are thermodynamically more favorable (Kung, 1986).    

 

1.2.1 Types of Selective Oxidation Reactions 

 

Selective oxidation reaction can be classified into two types: 

i) Oxidative dehydrogenation 

ii) Partial oxidation 

 

1.2.1.1 Oxidative Dehydrogenation 

 

Dehydrogenation is a process in which a hydrocarbon molecule is converted into a 

more unsaturated hydrocarbon by breaking C-H bonds and forming C=C bonds 

(Kung, 1986). Catalytic dehydrogenation is introduced to convert paraffins to olefins. 

However the yields are low and there are some limitations (Centi et al., 2001 and 

Nieto, 2006): 

i) Deactivation of catalyst by coke formation. 

ii) High operation temperature (973-1073 K) depends on paraffin. 

iii) Difficulties to separate alkenes from alkanes and by-products. 

 

As the solution to the above problems, oxidative dehydrogenation was introduced. 

The advantages of oxidative dehydrogenation are (Centi et al., 2001 and Nieto, 2006): 

i) Formation of water which overcome thermodynamically limitation. 

 3


