

UNIVERSITI PUTRA MALAYSIA

ENZYMATIC SYNTHESIS, CHARACTERIZATION AND ANALYTICAL APPLICATIONS OF FATTY HYDRAZIDES FROM PALM OIL

SHARIFAH MOHAMAD

FS 2008 34

ENZYMATIC SYNTHESIS, CHARACTERIZATION AND ANALYTICAL APPLICATIONS OF FATTY HYDRAZIDES FROM PALM OIL

By

SHARIFAH MOHAMAD

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malayisa, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

May 2008

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

ENZYMATIC SYNTHESIS, CHARACTERIZATION AND ANALYTICAL APPLICATIONS OF FATTY HYDRAZIDES FROM PALM OIL

By

SHARIFAH MOHAMAD

May 2008

Chair: Professor Dato' Wan Md. Zin Wan Yunus, PhD

Faculty: Faculty of Science

Hydrazides with the general formula R-CO-NHNH₂, have received a lot of attention due to their applications in biological, organic synthesis and analytical chemistry fields. The preparation of fatty hydrazides from palm oil has been developed in this research. Fatty hydrazides (FH) and fatty phenyl hydrazides (FPH) were successfully synthesized from palm oil as a raw material by one-step lipase catalyzed reaction. FTIR and CHN elemental analyses were carried out to determine the presence of the hydrazides in the products. The method offers several advantages such as renewable and abundant of raw materials, simple reaction procedure and high yield of products.

The application of the products as a reagent was carried out based on the ability of the FH and FPH to form complexes with some metal ions. FH was successfully used as an extractant for extraction and separation of copper(II). The separation of Cu(II) is

possible from other metal ions such as Co(II), Cr(VI), Ni(II), Zn(II) and Fe(III) at pH 5.5-6.5. A preconcentration method was proposed for the determination of Cu(II) in water samples. It was shown that the extraction from aqueous phase containing Cu(II) with organic phase containing FH and then stripping the organic phase with 2 M of HCl solution give a solution of Cu(II) 10 fold in concentrations.

FH was also successfully used as an extractant for extraction and separation of Mo(VI). This metal successfully separated from other metal ions such as Ni(II), Co(II), Al(III), Fe(III) and Mn(II). Quantitative stripping of Mo(VI) ion from the organic phase can be carried out using 2 M ammonium hydroxide. This proposed method was applied for the recovery of Mo(VI) from synthetic mixture and the results showed that more than 90% recovery of Mo(VI) is achieved and the metal ion solution is free from the impurities.

FH and FPH were also evaluated as an extractant for extraction and separation of gold(III) from chloride media. This metal was extracted quantitatively from hydrochloric media at 0.001-0.1 M into the organic phase. Gold(III) was successfully separated from Cu(II), Ni(II), Zn(II), Co(II) and Fe(III) by using FH or FPH. Quantitative stripping of gold(III) from the organic phase can be carried out using 2.0 M thiourea in 1.0 M HCl solution. The extraction and separation of gold(III) by FH or FPH was applied to separate and recover pure gold(III) from synthetic mixtures.

FPH synthesized from palm olein was also successfully used as a new reagent for the determination of V(V) by spetrophotometric method. The method is based on the colored complex of vanadium(V)-FPH. The metal ion forms dark brown colored complex which has an absorption maximum at 405 nm. Beer's law is valid over the concentration range of 0.2-20 mg/L and the limit of detection of this method is 0.01 mg/L. The characteristics of this developed method are simple, good selectivity, high sensitivity and rapid.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS BERENZIM, PENCIRIAN DAN PENGGUNAAN ANALISIS HIDRAZIDA LEMAK DARIPADA MINYAK KELAPA SAWIT

Oleh

SHARIFAH MOHAMAD

Mei 2008

Pengerusi: Professor Dato' Wan Md Zin Wan Yunus, PhD

Fakulti: Fakulti Sains

Hidrazida dengan formula umumnya R-CO-NHNH₂, mendapat banyak perhatian kerana pengunaannya dalam bidang biologi, sintesis organik dan kimia analisis. Penyediaan hidrazida lemak daripada minyak kelapa sawit telah dimajukan di dalam penyelidikan ini. Hidrazida lemak (FH) dan hidrazida fenil lemak (FPH) telah berjaya disintesiskan daripada minyak kelapa sawit sebagai bahan asas dengan tindakbalas satu peringkat menggunakan enzim lipase sebagai mangkin. Analisis FTIR dan analisis unsur CHN telah dijalankan untuk menentukan kehadiran kumpulan hidrazida di dalam produk. Kaedah ini mempunyai beberapa kelebihan seperti bahan asas yang berterusan dan amat banyak, prosedur tindak balas yang mudah dan hasil produk yang tinggi.

Penggunaan produk sebagai reagen telah dijalankan berasaskan kebolehan FH dan FPH membentuk kompleks dengan beberapa ion logam. FH telah berjaya digunakan sebagai pengekstrak untuk pengekstrakan dan pemisahan kuprum(II). Pemisahan kuprum(II) adalah mungkin dari ion logam yang lain seperti Co(II), Cr(VI), Ni(II), Zn(II) dan Fe(III) pada pH 5.5-6.5. Kaedah pra-pemekatan dicadangkan untuk penentuan Cu(II) di dalam sampel air. Ini telah ditunjukkan dengan pengekstrakan fasa akueus yang mengandungi Cu(II) dengan fasa organik yang mengandungi FH dan penanggalan daripada fasa organik dengan larutan 2 M HCl memberikan pemekatan larutan Cu(II) sebanyak 10 kali ganda.

FH juga telah berjaya digunakan sebagai pengekstrak untuk pengekstrakan dan pemisahan Mo(VI). Logam ini telah berjaya dipisahkan dari ion logam seperti Ni(II), Co(II), Al(III), Fe(III) dan Mn(II). Penanggalan kuantitatif bagi ion Mo(VI) dari fasa organik boleh dijalankan dengan menggunakan larutan 2 M ammonia. Kaedah ini diaplikasi untuk perolehan semula Mo(VI) dari campuran sintetik dan keputusan menunjukkan lebih dari 90% perolehan semula Mo(VI) telah dicapai and larutan ion logam tersebut bebas dari ketidaktulenan.

FH dan FPH telah berjaya digunakan sebagai pengekstrak untuk pengekstrakan dan pemisahan emas(III) dari medium klorida. Logam tersebut telah diekstrak secara kuantitatif dari medium hidroklorik pada 0.001-0.1 M ke dalam fasa organik. Emas(III) telah berjaya dipisahkan dari Cu(II), Ni(II), Zn(II), Co(II) dan Fe(III) dengan mengunakan FH atau FPH. Penanggalan kuantitatif bagi emas(III) dari fasa organik boleh dijalankan dengan menggunakan larutan 2.0 M thiourea di dalam larutan HCl

1.0 M. Pengekstrakan dan pemisahan emas(III) dengan FH atau FPH telah digunakan untuk pisah dan peroleh semula emas(III) tulen dari campuran sintetik.

FPH disintesis dari olein minyak sawit telah berjaya digunakan sebagai reagen baru dalam penentuan V(V) dengan kaedah spektrofotometrik. Kaedah ini beasaskan warna bagi kompleks vanadium(V)-FPH. Ion logam tersebut membentuk kompleks berwarna perang kehitaman dengan penyerapan maksimum pada 405 nm. Hukum Beer adalah sah di dalam julat kepekatan 0.2-20 mg/L dan had pengesanan bagi kaedah ini adalah 0.01 mg/L. Ciri kaedah yang dimajukan ini adalah mudah, keselektifan yang bagus, kesensitifan yang tinggi dan cepat.

ACKNOWLEDGEMENTS

In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah, the Cherisher and Sustainer of the worlds. May the blessings and peace of Allah be upon our prophet Muhammad ibn Abdullah (peace be upon him), upon his families and upon his companions.

I wish to express my gratitude to my supervisor, Prof. Dato' Dr Wan Md Zin Wan Yunus. This thesis would not have been realized without his support, encouragement, guidance and supervision throughout this work. I am also grateful to Prof Dr Md Jelas Haron and Assoc. Prof Dr Mohamad Zaki Abd Rahman for their capacities as members of Supervisory Committee. Thank you for the comments and suggestions. To the staff of Chemistry Department thank you for their help and co-operation. A word of thanks is also to Prof Dr Mhd Radzi Abas, University of Malaya for his advice and discussions.

My sincere thanks are to all my friends for the needed chats we had every day during our lunch breaks, which took my mind off work. This thesis may not be completed without your help and friendship, you are all great friends.

And to my family, thank you for supporting me throughout my long education. And special thanks with heart full of love to my beloved sister, Sheela for her love, encouragement, patience, understanding and moral support.

I certify that an Examination Committee has met on **date of viva voce** to conduct the final examination of Sharifah Mohamad on her Doctor of Philosophy thesis entitled "Enzymatic Synthesis Characterization and Analytical Application of Fatty Hydrazides from Palm Oil" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Chairman, PhD Professor

Department of Chemistry Faculty of Science Universiti Putra Malaysia (Chairman)

Examiner 1, PhD

Associate Professor Department of Chemistry Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Examiner 2, PhD

Department of Chemistry Faculty of Science Universiti Putra Malaysia (Internal Examiner)

External Examiner, PhD

Professor Department of Chemistry Faculty of Science University Kebangsaan Malaysia (External Examiner)

> HASANAH MOHD. GHAZALI, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment for the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Wan Md. Zin Wan Yunus, PhD

Professor Department of Chemistry Faculty of Science Universiti Putra Malaysia (Chairman)

Md. Jelas Haron, PhD

Professor Department of Chemistry Faculty of Science Universiti Putra Malaysia (Member)

Mohamad Zaki Abd Rahman, PhD

Associate Professor Department of Chemistry Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 July 2008

DECLARATION

I declare that the thesis is my original work expert for quotations and citations which have been duly acknowledgment. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other degree at Universiti Putra Malaysia or at any other institution.

SHARIFAH MOHAMAD

Date: 18 June 2008

LIST OF TABLES

Table		Page
2.1	Physical and chemical properties of palm oil and palm kernel olein	23
2.2	Fatty acid composition (%) in palm oil and palm kernel olein	25
2.3	Review of some extractants for copper separation and preconcentration	32
2.4	Review of some spectrophotometric reagents for determination of $V(V)$	42
3.1	Composition of synthetic mixture solutions containing Mo(VI)	61
3.2	Composition of synthetic mixture solutions containing gold(III)	65
3.3	Experimental conditions for determination PPH-vanadium(V) ratio (Job's method)	68
3.4	Experimental conditions for determination PPH-vanadium(V) ratio (slope ratio method)	68
3.5	Composition of synthetic mixture solutions containing V(V)	69
4.1	Optimum conditions of hydrazinolysis of palm oils	78
4.2	Percentage of conversion of various fraction of palm oil to fatty hydrazide	78
4.3	The elemental analysis data of FH	81
4.4	Spectral assignments of palm olein, fatty hydrazide and palmityl hydrazide	82
4.5	Optimum conditions of hydrazinolysis of palm oils	90
4.6	Percentage of conversion of various fraction of palm oil to fatty phenyl hydrazide	90
4.7	The elemental analysis data of FPH	92
4.8	Spectral assignments of palm olein, fatty phenyl hydrazide and palmityl phenyl hydrazide	94
4.9	Separation factor of separation of Cu(II) from other metal ions	107

4.10	Effect of foreign ions (500 mg/L) on the extractant of Cu(II) ion (10 mg/L) from the aqueous phase	108
4.11	Effect of stripping agents on recovery of Cu(II)	110
4.12	The application of the preconcentration procedure on water samples (n=5)	110
4.13	Percentage of extraction of Mo(VI) in the presence of Ni(II), Co(II), Al(III), Mn(II) or Fe(III) from HCl solutions	119
4.14	Effect of anions on extraction of Mo(VI)	120
4.15	Stripping agent efficiency	122
4.16	Effect of alkaline solutions concentration on stripping of Mo(VI)	122
4.17	Recovery of pure molybdenum(VI) from synthetic mixture	123
4.18	Binary separation of gold(III) from base metals by FH	133
4.19	Binary separation of gold(III) from base metals by FPH	134
4.20	Effect of the presence of chloride salts on the extraction of gold(III) by FH and FPH	136
4.21	Stripping agent efficiency	139
4.22	Recovery of gold(III) from synthetic mixture solutions by using FH	140
4.23	Recovery of gold(III) from synthetic mixture solutions by using FPH	141
4.24	The effect of foreign ions on the determination of 1 mg/L of vanadium(V)	147
4.25	Molar absorptivity, specific absorptivity and Sandell sensitivity for FPH and PPH	154
4.26	Limit of detection of vanadium(V) using FPH and PPH	155
4.27	Determination of vanadium(V) in some synthetic mixture solutions	156
4.28	Recovery of vanadium(V) in water samples	157

LIST OF FIGURES

Figure		Page
2.1	Biotransformation of an ester in organic solvents	13
2.2	World production and uses of oils and fats (1998, in million tones)	20
4.1	Effect of temperature on hydrazinolysis of FH by various lipases	71
4.2	Effect of various solvent on hydrazinolysis of FH	73
4.3	Effect of reaction period on hydrazinolysis of FH	74
4.4	Effect of catalyst loading on hydrazinolysis of FH	76
4.5	Effect of mole ratio of hydrazine hydrate on hydrazinolysis of FH	77
4.6	Possible reaction for the biosynthesis of FH in the presence of water	80
4.7	FTIR spectra of (a): Palm olein (b) FH from palm olein	83
4.8	FTIR spectra of (a): Palmityl hydrazide (PH) (b) FH from palm olein	83
4.9	Effect of temperature on hydrazinolysis of FPH by various lipases	85
4.10	Effect of solvent on hydrazinolysis of FPH	86
4.11	Effect of reaction period on hydrazinolysis of FPH	87
4.12	Effect of catalyst loading on hydrazinolysis of FPH	88
4.13	Effect of mole ratio of phenylhydrazine on hydrazinolysis of FPH	89
4.14	Possible reaction for the biosynthesis of FPH in anhydrous medium	91
4.15	FTIR spectra of (a) Palm Olein, and (b) FPH from palm olein	94
4.16	FTIR spectra of (a) Palmityl phenyl hydrazide (PPH) and (b) FPH from palm olein	95
4.17	¹ H NMR spectra of FPH from palm olein	96

4.18	¹ H NMR spectra of palmityl phenyl hydrazide (PPH)	96
4.19	Effect of pH on extraction of Cu(II) by FH and FPH	98
4.20	Effect of pH on extraction of Ni(II) by FH and FPH	98
4.21	Effect of pH on extraction of Zn(II) by FH and FPH	99
4.22	Effect of pH on extraction of Co(II) by FH and FPH	99
4.23	Effect of pH on extraction of Fe(III) by FH and FPH	100
4.24	Effect of pH on extraction of Mn(II) by FH and FPH	100
4.25	Distribution ratio for Cu(II), Ni(II), Zn(II), Co(II), Mn(II) and Fe(III) with FH	101
4.26	Distribution ratio for Cu(II), Ni(II), Zn(II), Co(II), Mn(II) and Fe(III) with FPH	101
4.27	Effect of solvent on the extraction of copper(II) by FH	103
4.28	Effect of pH on the extraction of Cu(II)	104
4.29	Effect of shaking period on the extraction of Cu(II)	105
4.30	Plot of log D vs log [FH]	106
4.31	Effect of the A/O ratio on the extraction of Cu(II) with FH in toluene	109
4.32	Extraction of molybdenum(VI) using FH and FPH	112
4.33	Effect of solvent on the extraction of Mo(VI)	113
4.34	Effect of shaking period on the extraction of Mo(VI)	114
4.35	Effect of HCl concentration on the extraction of Mo(VI)	116
4.36	Effect of the concentration of FH on the extraction of Mo(VI)	117
4.37	Effect of HCl concentration on the extraction of metal ions by FH	118
4.38	Extraction of gold(III) by using FH and FPH	125
4.39	Effect of solvent on the extraction of gold(III)	126

4.40	Effect of shaking period on the extraction of gold(III) ion	127
4.41	Effect of HCl concentration on the extraction of gold(III) by using FH and FPH	129
4.42	Effect of the concentration of FH on the extraction of gold(III)	130
4.43	Effect of the concentration of FPH on the extraction of gold(III)	130
4.44	Effect of HCl concentration on the extraction of metal ions by FH	131
4.45	Effect of HCl concentration on the extraction of metal ions by FPH	132
4.46	Effect of anions on the extraction of gold(III) by FH	137
4.47	Effect of anions on the extraction of gold(III) by FPH	138
4.48	Absorption spectra (a) absorption spectra of FPH (b) absorption spectra of FPH-V(V) complex	142
4.49	Effect of solvent on the absorbance of V(V)-FPH system	143
4.50	Effect of acid on the absorbance of V(V)-FPH system	144
4.51	Effect of nitric acid concentration on the absorbance of $V(V)$ -FPH system	144
4.52	Effect of FPH concentration on the absorbance of $V(V)$ -FPH system	145
4.53	Absorption spectra of FPH-V(V), FPH-Fe(III) and FPH-Cr(VI) complex	148
4.54	V(V) complex stoichiometry determination with PPH at 405 nm (Job's method)	149
4.55	V(V) complex stoichiometry determination with PPH at 405 nm (Slope ratio method)	150
4.56	Response curve of FPH towards different concentration of V(V)	151
4.57	Response curve of PPH towards different concentration of V(V)	151
4.58	Calibration curve of complex FPH-vanadium(V)	153

4.59	Calibration curve of complex PPH-vanadium(V)	153
4.60	Reproducibility study in FPH response towards V(V)	155

LIST OF ABBREVIATIONS

DAGs	diacylglycerols
DBC	di-butylcarbitol
DEHPA	di-2-ethylhexylphosphoric acid
FAAS	flame atomic absorption spectroscopy
FFAs	free fatty acids
FH	fatty hydrazide
FPH	fatty phenyl hydrazide
FTIR	fourier transforms infrared spectroscopy
ICP-AES	inductively coupled plasma-atomic emission spectroscopy
MAGs	monoacylglycerols
NMR	nuclear magnetic resonance
PH	palmityl hydrazide
РРН	palmityl phenyl hydrazide
TAG	triacylglycerol
TAGS	triacylglycerols
TBP	tributyl phosphate
TBPO	tributyl phosphine oxide

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
LIST OF ABBREVIATIONS	xviii

CHAPTER		
1	INTRODUCTION	1
	1.1 Background of study	1
	1.1.1 Hydrazide	1
	1.1.2 Application of hydrazide in analytical chemistry	4
	1.2 Objectives of study	6
2	LITERATURE REVIEW	8
	2.1 Synthesis of hydrazide	8
	2.2 Lipases	11
	2.2.1 Lipase-catalyzed synthesis of carboxylic amides	14
	2.2.2 Lipases in fat and oleochemical industry	16
	2.3 Fats and oils as oleochemical raw materials	19
	2.3.1 Palm oils	20
	2.3.2 Characteristics of palm oil	21
	2.3.3 Chemical composition of palm oil	23
	2.3.4 Current status of the palm oil industry	25
	2.4 Organic reagent for analytical application	27
	2.5 Solvent extraction	28
	2.5.1 Preconcentration and separation of copper(II) by solvent extraction	30
	2.5.2 Recovery and purification of molybdenum(VI) by solvent extraction	32
	2.5.3 Recovery and purification of gold by solvent extraction	34
	2.6 Spectrophotometric method	37
	2.6.1 Spectrophotometric method for determination of	39
	vanadium	

3	MATERIALS AND METHODS	44
	3.1 Materials and equipments	44
	3.1.1 Materials and equipments for synthesis of FH and FPH	44
	3.1.2 Materials and equipments for application studies	45
	3.2 Synthesis of FH	48
	3.2.1 General procedure for enzymatic synthesis of FH	48
	3.2.2 Separation and purification of FH	48
	3.3 Optimization study of FH synthesis	48
	3.3.1 Screening of lipase	48
	3.3.2 Effect of solvent	49
	3.3.3 Effect of reaction period	49
	3.3.4 Effect of catalyst loading	49
	3.3.5 Effect of mole ratio of hydrazine	50
	3.4 Synthesis of fatty phenylhydrazide (FPH)	50
	3.4.1 General procedure for enzymatic synthesis of FPH	50
	3.4.2 Separation and purification of FPH	50
	3 5 Optimization study of FPH synthesis	51
	3.5.1 Screening of linase	51
	3.5.2 Effect of solvent	51
	3.5.3 Effect of reaction period	51
	3.5.4 Effect of catalyst loading	52
	3.5.5 Effect of mole ratio of phenyl hydrazine	52
	3.6 Characterization of FH and FPH	52
	3.6.1 Elemental analysis	52
	3.6.2 Fourier Transform Infrared (FTIR) spectroscopy	53
	3.6.3 ¹ H Nuclear Magnetic Resonance (NMR)	53
	3.7 Metal ion extraction by solvent extraction	53
	3.7.1 Effect of pH on metal ion extraction by using FH and FPH	53
	3.8 Preconcentration and separation of copper(II) ion by	54
	using FH	
	3.8.1 Effect of solvent on extraction of copper(II) ion	54
	3.8.2 Effect of pH on the extraction of copper(II) ion	55
	3.8.3 Effect of shaking period	55
	3.8.4 Effect of FH concentration on the extraction of copper(II) ion	55
	3.8.5 Separation of copper(II) from other metal ions	56
	3.8.6 Effect of foreign ions on extraction of copper(II) ion	56
	3.8.7 Effect of aqueous to organic phase ratio	56
	3.8.8 Effect of different acids of various concentration	57
	stripping of copper(II) from organic phase	
	3.8.9 Preconcentration of copper(II) ion from water samples	57
	using optimum conditions of extraction and stripping	
	3.9 Extraction and separation of molybdenum(VI) using FH	58
	3.9.1 Effect of solvent on the extraction of molybdenum	58
	(VI) ion	

3.9.2 Effect of HCl concentration on the extraction of molybdenum(VI) ion	58
3.0.3 Effect of shaking period	50
3.0.4 Effect of EH concentration	50
2.0.5 Separation of molyhdenym(VII) from according	50
metals	39
3.9.6 Effect of anions on the extraction of molybdenum(VI)	60
3.9.7 Stripping study	60
3.9.8 Recovery of molybdenum(VI) from synthetic solutions	61
3.10 Extraction and separation of gold(III) using FH and FPH	62
3.10.1 Effect of solvent on the extraction of gold(III)	62
3.10.2 Effect of HCl concentration on the extraction of	62
gold(III) ion	
3 10 3 Effect of shaking period	62
3 10.4 Effect of extractant concentration	63
3.10.5 Separation of gold(III) from associated metals	63
3 10.6 Effect of the presence of chloride salts on the	63
extraction of gold(III)	05
3 10.7 Effect of anions on the extraction of gold(III)	64
3.10.8 Stripping agent studies	64
3.10.0 Becovery of gold(III) from synthetic solutions	65
3.11 Spectrophotometric studies for determination of vanadium	65
(V) using FPH	05
3.11.1 Absorption of spectra	65
3.11.2 Effect solvent	66
3.11.3 Effect of acidity	66
3.11.4 Effect of concentration of FPH	66
3.11.5 Effect of foreign ions	67
3.11.6 Determination of molar ratio of FPH-vanadium(V)	67
complexes	
3.11.7 Dynamic range and sensitivity	68
3.11.8 Reproducibility of the method	69
3.11.9 Determination of vanadium(V) from synthetic	69
solutions and water samples	
RESULTS AND DISCUSSION	70
4.1 Optimization of FH synthesis	70
4.1 1 Effect of various linases on the biosynthesis of FH	70
A 1.2 Effect of solvent on biosynthesis of FH	70
A 1.3 Effect of reaction period on biosynthesis of FH	74
4.1.9 Effect of catalyst loading on biosynthesis of FH	75
4.1.5 Effect of mole ratio of hydrazine hydrate on	76
hiosynthesis of EH	70
1 1 6 Hydrazinolysis of various products of palm oil	רד
4.1.7 Proposed reaction involved in the biosynthesis of FH	70
T.I., Troposed reaction involved in the biosynthesis of FII	17

4

4.2 Characterization of FH	80
4.2.1 Elemental analysis of FH	80
4.2.2 FTIR spectra of FH	81
4.3 Optimization of FPH synthesis	84
4.3.1 Effect of various lipases on the biosynthesis of FPH	84
4.3.2 Effect of solvent on biosynthesis of FPH	85
4.3.3 Effect of reaction period on biosynthesis of FPH	87
4.3.4 Effect of catalyst loading on biosynthesis of FPH	88
4.3.5 Effect of mole ratio of phenylhydrazine on	89
biosynthesis of FPH	
4.3.6 Hydrazinolysis of various products of palm oil	90
4.3.7 Proposed reaction involved in biosynthesis of FPH	91
4.4 Characterization of FPH	92
4.4.1 Elemental analysis of FPH	92
4.4.2 FTIR spectra of FPH	93
4.4.3 ¹ H NMR of FPH	95
4.5 Solvent extraction of metals by FH and FPH	97
4.5.1 Effect of pH on various metal ion extraction	97
4.6 Preconcentration and separation of copper(II) by FH	102
4.6.1 Effect of solvent on the extraction of Cu(II)	102
4.6.2 Effect of pH on the extraction of Cu(II)	103
4.6.3 Effect of shaking period on the extraction of Cu(II)	105
4.6.4 Effect of FH concentration on the extraction of Cu(II)	105
4.6.5 Separation of Cu(II) from other metals	106
4.6.6 Effect of foreign ions on the extraction of Cu(II)	107
4.6.7 Effect of aqueous to organic phase ratio	108
4.6.8 Effect of stripping agent for preconcentration of Cu	109
4.6.9 Preconcentration of Cu in water samples	110
4.7 Extraction and separation of molybdenum(VI) using FH	111
4.7.1 Extraction of molybdenum(VI) ion by using FH and	112
FPH	
4.7.2 Effect of solvent on the extraction of molybdenum(VI)	113
4.7.3 Effect of shaking period	114
4.7.4 Effect of HCl concentration on the extraction of	114
molybdenum(VI)	
4.7.5 Effect of FH concentration on the extraction of	116
molybdenum(VI)	
4.7.6 HCl concentration effect on extraction of various metal	117
ions	
4.7.7 Separation of molybdenum(VI) from associated metals	118
4./.8 Effect of anions on the extraction of molybdenum(VI) $4.7.8$ Effect of anions on the extraction of molybdenum(VI)	119
4. /.9 Stripping agent studies	121
4./.10 Recovery of molybdenum(VI) from synthetic	123
solutions	

	4.8 Extraction and separation of gold(III) using FH and FPH	124
	4.8.1 Extraction of gold(III) ion by using FH and FPH	125
	4.8.2 Effect of shaking period on gold(III)	120
	4.8.5 Effect of UCl concentration on the extraction of	120
	4.8.4 Effect of HCI concentration on the extraction of gold(III)	127
	4.8.5 Effect of FH concentration on the extraction of gold(III)	129
	4.8.6 HCl concentration effect on extraction of various metal ions	131
	4.8.7 Separation of gold(III) from associated metals	132
	4.8.8 Effect of the presence of chloride salts on the extraction of gold(III)	134
	4.8.9 Effect anions on the extraction of gold(III)	136
	4.8.10 Stripping agent studies	138
	4.8.11 Recovery of gold(III) from synthetic solutions	139
	4.9 Spectrophotometric studies for determination of vanadium	141
	(V) using FPH	
	4.9.1 Absorption spectra	142
	4.9.2 Effect of solvent	143
	4.9.3 Effect of acidity	143
	4.9.4 Effect of concentration of FPH	145
	4.9.5 Effect of foreign ions	146
	4.9.6 Molar ratio of PPH-vanadium(V) complex	148
	4.9.7 Dynamic range and sensitivity	150
	4.9.8 Limit of detection (LOD)	154
	4.9.9 Reproducibility of the method	155
	4.9.10 Determination of vanadium in synthetic solutions	156
	4.9.11 Application: Analysis of vanadium in spiked water samples	156
5	CONCLUSIONS	158
	5.1 Recommendations for further studies	160
REFERENCES		162
APPENDICES BIODATA OF THE STUDENT		180 182

LIST OF PUBLICATIONS

183

CHAPTER I

INTRODUCTION

1.1 Background of study

1.1.1 Hydrazide

Hydrazides with the general formula RCONHNH₂ have been thoroughly studied as ligands with non-bonded lone pair of electrons on the nitrogen of amino group and oxygen of the carbonyl group. It may coordinate with many metal ions monodentate or multidentate (Gudasi *et al.*, 2007; Becher *et al.*, 2006; Zhang *et al.*, 2006). The molecular structure of chelate-forming reagents must contain at least two donor atoms capable of bonding to the same metal atom. The complex formation with hydrazide ligands in aqueous solution demonstrated clearly that two atoms (O, N) bonding modes of the ligands are accessible to metal ions (Bontchev *et al.*, 1981; Ahmed and Chaudhuri, 1971).

The formation of metal complexes plays an important role in the enhancement of their biological activity (Singh *et al.*, 2000). In recent years, hydrazides have received a lot of attention due to their biological activity as tuberculostatic (Yadav *et al.*, 2005), antibacterial agent (Malhotra *et al.*, 1992), antitumor agent (Dodoff *et al.*, 1994) and anticancer agent (Zhang *et al.*, 2004). In addition, hydrazides have received considerable attention in analytical chemistry chelating reagents for metal extraction and determination (Jal *et al.*, 2001; Ahmed and Banoo, 1999; Liu *et al.*, 1999).

