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The accuracy of Global Positioning System (GPS) measurement is determined by the 

sum of several sources of error, such as orbit error, satellite clock error, multipath error, 

receiver noise error, selective availability, ephemeris error and also atmospheric error. 

The principal error source in the GPS technology is a delay experienced by the GPS 

signal in propagating through the electrically neutral atmosphere, usually referred to as 

a tropospheric delay. This delay is normally calculated in the zenith direction, and is 

referred to as a zenith tropospheric delay. The delay consists of a zenith hydrostatic 

delay, which can be modeled accurately using surface barometric measurements, and a 

zenith wet delay, which cannot be modeled from surface barometric measurements and 

depends on atmospheric water vapor. The mapping function is the coefficient for the 

zenith delay, either hydrostatic (dry) or non-hydrostatic (wet) delay that can be used to 

increase or reduce the tropospheric delay.  

In this research, 3 mapping function models which are known as , 

and Neill ( ) are selected to be simplified, where as 2 mapping 

)(EUNBab

)(EUNBabc NMF
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function models which are known as and Neill ( ) are selected to be 

modified. For the simplification of the mapping function models, regression method has 

been used to find the suitable equation. The simplified mapping function models 

for ,  and Neill ( ), can reduce the computing time by 

reducing the percentage of number of operations between 71.4% to 92.3% for linear 

equations and 28.6% to 80.8% for quadratic equations. The calculations of the sum of 

errors show that the deviation of the simplified model from the original model is not 

significant. The simplification of the mapping function models can also create better 

understanding of the models by using hyperbolic, linear and also quadratic equations 

rather than continued fractions. Results indicate that the modification of the mapping 

function models can give smaller value especially for less than 5 degree elevation 

angles. As the coefficient of the zenith delay, it can improve the tropospheric delay 

directly. The improvement of the tropospheric delay for UNBabc and Neill mapping 

functions, can be obtained up to 19.1% and 17.8% respectively at 2 degree 

elevation angle.  
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Kejituan pengukuran sistem penentududukan sejagat (GPS) boleh ditentukan oleh hasil 

tambah beberapa punca gangguan (error) seperti gangguan pada orbit, gangguan jam 

pada satelit, gangguan daripada berbilang laluan, ketidaktepatan pada alat penerima, 

keupayaan pilihan, gangguan daripada efemeris dan juga gangguan daripada lapisan 

atmosfera. Punca gangguan utama terhadap teknologi GPS adalah kelewatan yang 

dialami oleh signal GPS semasa merambat melalui lapisan atmosfera yang neutral, 

yang disebut kelewatan atmosfera. Kelewatan ini dikira dalam arah ‘zenith’, dan 

dirujuk sebagai kelewatan troposfera ‘zenith’. Kelewatan ini terdiri daripada kelewatan 

hidrostatik ‘zenith’, yang boleh dimodelkan dengan jitu menggunakan pengukuran 

barometrik permukaan dan kelewatan lembap ‘zenith’ yang tidak boleh dimodelkan 

daripada pengukuran barometrik permukaan dan hanya bergantung kepada tekanan wap 

air atmofera. Fungsi pemetaan (mapping function) merupakan pekali kepada kelewatan 

‘zenith’ bagi kedua-dua komponen samada hidrostatik (kering) atau bukan hidrostatik 

(lembap) yang boleh digunakan untuk menokok atau menurunkan kelewatan 

troposferik.  

 iv



Dalam kajian ini, 3 model fungsi pemetaan iaitu fungsi pemetaan , 

dan Neill ( ) telah dipilih untuk diringkaskan, manakala 2 model 

fungsi pemetaan UNBabc dan Neill ( ) telah dipilih untuk diubahsuaikan. Bagi 

meringkaskan model fungsi pemetaan ini, kaedah regresi digunakan untuk 

mendapatkan persamaan yang sesuai Model fungsi pemetaan bagi , 

 and Neill ( ) yang telah diringkaskan ini boleh menurunkan masa 

pengiraan dengan menurunkan bilangan operasi model di antara 71.4% hingga 92.3% 

untuk persamaan linear dan antara 28.6% hingga 80.8% untuk persamaan kuadratik.  

Pengiraan jumlah kesilapan menunjukkan sisihan bagi model yang diringkaskan 

daripada model asal tidak signifikan. Model fungsi pemetaan yang diringkaskan boleh 

memudahkan kefahaman mengenai operasi model dengan menggunakan persamaan 

hiperbola, linear dan juga kuadratik berbanding dengan pecahan berlanjar. Keputusan 

yang diperolehi menunjukkan bahawa, pengubahsuaian model fungsi pemetaan dapat 

mengecilkan nilai fungsi pemetaan terutama bagi sudut dongakan yang kurang daripada 

5 darjah. Selaku pekali kepada kelewatan zenith, nilai kelewatan troposfera telah dapat 

dikurang secara langsung. Pembaikan nilai kelewatan troposfera bagi fungsi pemetaan 

dan Neill, boleh dicapai sehingga 19.1% and 17.8% masing – masing 

pada sudut dongakan 2 darjah.  
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CHAPTER 1   

 

INTRODUCTION 

 

1.1 Background 

The issue of atmospheric delay of Global Positioning system (GPS) signal is now 

extensively investigated to minimize the positioning error due to atmospheric delay, 

especially tropospheric and ionospheric delay. The refraction index is a function of the 

actual tropospheric path through which the ray passes. The ray’s path begins at the 

receiver antenna ending at the last point of the effective troposphere. Tropospheric 

delay refers to the refraction of the GPS signal as it passes through the neutral 

atmosphere from the satellite to the earth. The effect causes the distance travelled by 

the signal to be longer than the actual geometric distance between the satellite and 

receiver. Hence, there is scope to introduce the mathematical modeling of the 

tropospheric model to improve the delay. 

 

The signal bends from its original path and experiences velocity variations as it passes 

through regions of different refractive indices in the troposphere and the ionosphere. An 

ionospheric delay is caused by the presence of ionized gas molecules in the ionosphere, 

and it is dispersive at radio frequencies, meaning that the refractive index depends on 

the signal frequency. The ionospheric delay is dependent on the density of free 

electrons. The ionospheric delay can be removed using a linear combination of 

observations on two GPS frequencies (Shresta, 2003). 



 

Various tropospheric delay models have been developed to estimate these delays, as a 

function of the satellite elevation angle, receiver height, and meteorological parameters, 

such as temperature, pressure, and humidity. The range delay in the zenith direction is 

approximately 2.5m however, for an elevation of 5 degrees, it increases to about 25m. 

This dependence on elevation angle is described by a mapping function, so that the 

delay near the horizon is three to five times higher than in the zenith direction (Ahn, 

2005). 

 

The zenith hydrostatic delay contributes about 90% of the total delay to the 

tropospheric delay (Skone, 2001). Zenith hydrostatic delay models can be estimated 

with accuracies better than 1% where the zenith hydrostatic delay is considered to be a 

function of the surface pressure and hydrostatic equilibrium is assumed. The zenith wet 

delay contributes about 10% of the total delay, and the zenith wet delay models have 

accuracies of 10 to 20%. The wet component depends on water vapor, which is highly 

variable with the space and time and is difficult to model (Shresta, 2003). 

 

The tropospheric delay is measured in distance, and a typical zenith tropospheric delay 

would be between 2.3 to 2.5m (Misra and Enge, 2001), meaning that the troposphere 

causes a GPS range observation to have an apparent additional 2.5m distance between 

the ground based receiver and a satellite at zenith. The delay caused by the troposphere 

can be separated into two main components: the hydrostatic delay and the wet delay 

(Saastamoinen, 1972). The hydrostatic delay is caused by the dry part of gases in the 

atmosphere, while the wet delay is caused solely by highly varying water vapor in the 
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atmosphere. The hydrostatic delay makes up approximately 90% of the total 

tropospheric delay. The hydrostatic delay is entirely dependent on the atmospheric 

weather characteristics found in the troposphere. The hydrostatic delay in the zenith 

direction is typically about 2.3m (Businger et al., 1996; Dodson et al., 1996). The 

hydrostatic delay has a smooth, slowly time-varying characteristic due to its 

dependence on the variation of surface pressure; it can be modeled and range 

corrections applied for more accurate positioning results using measurements of surface 

temperature and pressure.  

 

However, the wet delay is dependent on water vapor pressure and is a few centimeters 

or less in arid regions and as large as 35 centimeters in humid regions. The wet delay 

parameter is highly variable with space and time, and cannot be modeled precisely with 

surface measurements (Bevis et al., 1992). By measuring the total delay, and 

calculating the hydrostatic delay from theoretical models using surface measurements, 

the remaining wet delay signal, caused by water vapor in the atmosphere, may be 

recovered.  

 

The tropospheric delays are not measured directly to all satellites in view. Instead, there 

are several mapping functions that take zenith signal delays and map them to all 

individual GPS satellites in view at a given site. The Lanyi (1984), Herring (1992), 

Ifadis (1986), and Neill (1996) models are examples of mapping functions that can be 

used for high-precision positioning applications. The individual satellite-receiver line-

of-sight signal delays are termed as slant delays. 

 1.3



 

The study of atmospheric water vapor is important for two reasons. Firstly, short-term 

weather forecasting is affected by the content of water vapor in the atmosphere. Water 

vapor is highly variable both in time and space and sudden changes in water vapor in 

the atmosphere can result in changes in the local weather. Water vapor is fundamental 

to the transfer of energy in the atmosphere (Rocken et. al, 1989). This transfer of 

energy often results in thunderstorms or even more violent atmospheric phenomena. 

Secondly, long term climate changes are reflected in water vapor content. Water vapor 

is a greenhouse gas, which traps emitted long wave radiation from the Earth’s surface. 

Scientists may be able to directly measure and model the spatio-temporal 

manifestations of climate change, such as changes to processes of atmospheric water 

vapor content. Better predictions of weather can be obtained by measuring water vapor 

accurately both in time and space using GPS. The use of GPS to measure water vapor 

in the atmosphere for the application of weather predictions and study of climate 

change is currently referred to as GPS meteorology (Shresta, 2003). 

 

Tropospheric delay can be divided into hydrostatic (dry) delay and wet delay. At zenith 

direction, tropospheric delay contributes about 2.5 m. Hydrostatic (dry) delay 

contributes 2.3m (90%) and wet delay contributes about 0.2 m (10%) of the 

tropospheric delay (Skone, 2001). This hydrostatic component has a smooth, slow time-

varying characteristic due to its dependence on variations in surface air pressure 

(weather cells). So this part can be modeled and removed with an accuracy of a few 

millimetres or better using a surface model (including pressure, temperature and 

humidity). It does not therefore create much of a problem as far as its effect on GPS 
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signals. Although wet delay is much smaller than the hydrostatic component but the 

uncertainties in wet tropospheric delay modeling do place a great burden on high 

precision GPS applications.  

 

1.2 Rationale of the research 

Many atmospheric models were established by using many approaches. However the 

difficulty in modeling the tropospheric effect, especially water vapor is the main reason 

why the researchers are still looking for better model for reducing the tropospheric 

error. Troposphere behaves like a non dispersive medium, whereby the refraction is 

independent of the frequency of the signals passing through it, so troposphere effect 

cannot be eliminated via dual-frequency observations (Leick, 1995).  

 

Nowadays, many modern mapping functions such as UNBabc , , Neill and 

some others have been established in a form of continued fraction, which introduce 

many operations. The number of operations for those mapping function models should 

be reduced from continued fraction form into simpler form to allow shorter computing 

time and better understanding of the models, but at the same time can give similar value 

for the mapping function scale factor.    

UNBab

Tropospheric delay can be reduced by using smaller mapping function. As a coefficient 

to the zenith tropospheric delay for both dry and also wet components, the value of 

mapping function can affect the total tropospheric delay. Mapping function depends on 

the elevation angle and produce larger value of mapping function by decreasing the 

elevation angle, especially for the elevation angles less than 5 degree.  There is a need 
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to minimize the mapping function in order to improve the total tropospheric delay for 

GPS signal. Saastamoinen model (1972) is selected for tropospheric delay calculation 

due to its accuracy about 3cm in zenith and this model is widely used for high accuracy 

GPS positioning (Mendes, 1999). 

 

1.3 Objectives and contributions 

The objectives of this research focus on the simplification and also the modification of 

the mapping functions that affects the tropospheric delay directly, as given below: 

a. To develop a simple mapping function models using simulated data of , 

and also Neill mapping function ( models for both hydrostatic and 

also non-hydrostatic components, as discussed in Chapter 4. 

abUNB

abcUNB )NMF

 

b. To investigate the improvement of the modification of and also Neill 

mapping function ( , either for hydrostatic or non-hydrostatic components 

by comparing its tropospheric delay values using Saastamoinen model as 

described in Chapter 5. 

abcUNB

)NMF

 

The research contributions of the thesis are: 

a. Simplified , and also Neill mapping function ( models 

have been developed for both hydrostatic and also non-hydrostatic models, 

which can be used to reduce the computing time and better understanding of the 

model for getting the mapping function scale factor. 

abUNB abcUNB )NMF
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b. Modified mapping function models for and have been developed 

for both hydrostatic and also non-hydrostatic models, which can be used to 

improve the tropospheric delay at arbitrary elevation angles. 

abcUNB NMF

 

1.4 Thesis outline 

 

Chapter 1 states the background of this research, the problems of the GPS signal, 

motivation and the objectives of the thesis. Chapter 2 will present the mapping 

functions for the some established model and also mathematical background of the 

tropospheric delay by using Saastamoinen (1972) model. Basic fundamentals of GPS 

such as the GPS theory, different error sources, the principles of GPS signal delays in 

the troposphere and some of the fundamental models for mitigating the tropospheric 

errors are discussed in Chapter 3.  

For Chapter 4, the simplification of mapping function is shown using regression 

approaches. The comparison between the original and the simplified model is 

conducted using statistical analysis. The sum of errors is calculated to get the difference 

between the original and also the simplified models. In Chapter 5, the modification of 

the mapping function and also the improvement of the tropospheric delay are discussed 

in detail.  

 

As a conclusion, Chapter 6 discusses the overall result of the thesis. The effect of 

simplification of the mapping function models and the calculation of the sum of errors 

which shows the deviation between the original and simplified mapping function are 
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