

UNIVERSITI PUTRA MALAYSIA

CONCENTRATIONS OF HEAVY METALS IN THE SOFT TISSUES OF MUDFLAT SNAILS (*TELESCOPIUM TELESCOPIUM*) FROM THE INTERTIDAL AREAS OF PENINSULAR MALAYSIA

NOORHAIDAH BT ARIFIN

FS 2008 7

CONCENTRATIONS OF HEAVY METALS IN THE SOFT TISSUES OF MUDFLAT SNAILS (*TELESCOPIUM TELESCOPIUM*) FROM THE INTERTIDAL AREAS OF PENINSULAR MALAYSIA

By

NOORHAIDAH BT ARIFIN

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in fulfillment of the Requirements for the degree of Masters of Science

July 2008

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

CONCENTRATIONS OF HEAVY METALS IN THE SOFT TISSUES OF MUDFLAT SNAILS (*TELESCOPIUM TELESCOPIUM*) FROM THE INTERTIDAL AREAS OF PENINSULAR MALAYSIA

By

NOORHAIDAH BT ARIFIN

July 2008

Chairman: Yap Chee Kong, PhD

Faculty: Faculty of Science

ABSTRACT

The main aim of this study is to establish mudflat snail *Telescopium telescopium* as a biomonitor of heavy metals for the intertidal area of Peninsular Malaysia. From this study, the concentrations of heavy metals in the different parts of soft tissues and shells were determined in *T. telescopium* collected from 16 geographical sites along the west coast and one site from the east coast (Tumpat, Kelantan) of Peninsular Malaysia. Based on the 17 populations, the mean concentrations of heavy metals in the total soft tissues of *T. telescopium* varied widely from 53.59 – 187.07 µg/g dry weight for Cu, 65.11 – 155.38 µg/g dry weight for Zn, 5.59 – 17.66 µg/g dry weight for Ni and 304.06 - 1062.19 µg/g dry weight for Fe.

The soft tissues of snail *T. telescopium* were dissected, separated and pooled into seven parts namely foot, cephalic tentacle, mantle, muscle, gill, remaining soft tissues and digestive caecum and the concentrations of heavy metals in these tissues were measured. In the study of the relationship between different soft tissues of *T*.

telescopium with its environment represented by sediment samples, the Pearson's correlation coefficients results showed positive significant correlation (p < 0.05) were observed between Cd, Cu, Fe, Ni, Pb and Zn in the different soft tissues and geochemical fraction of 6 metals studied in the sediment. The Pearson correlation coefficients suggested that some soft tissues can be good biomonitoring organs (Cu: mantle and remaining soft tissues; Fe: mantle, remaining soft tissues and foot; Ni: gill and remaining soft tissues; Pb: gill, remaining soft tissues and digestive caecum; Zn: gill and remaining soft tissues). It is noted that particular organ may be more effective tool than the total soft tissues to monitor heavy metal contamination in the intertidal zone. The study on the ratio of metals in the shell to the metals in the different soft tissues shows that shell has higher degrees of variability for Cd, Ni and Pb than in the different soft tissues of *T. telescopium*. Therefore, the results indicated lower degrees of variability of Fe, Cu and Zn in the shells of *T. telescopium* than in the different soft tissues of *T. telescopium*.

In conclusion, the metal distributions in the different soft tissues of *T. telescopium* indicated that a particular organ is more useful and accurate to monitor a particular metal contaminations in the intertidal area. The shells and soft tissues of *T. telescopium* are found as potential biomonitor of Cd, Cu, Fe, Ni, Pb and Zn while the usefulness of the shells need further studies.

ABSTRAK

KEPEKATAN LOGAM-LOGAM BERAT DI DALAM BEBERAPA TISU LEMBUT SIPUT MUDFLAT *Telescopium telescopium* (Linnaeus) DARI KAWASAN PASANG SURUT SEMANANJUNG MALAYSIA

Oleh

NOORHAIDAH BT ARIFIN

Julai 2008

Pengerusi: Yap Chee Kong, PhD

Fakulti: Fakulti Sains

Tujuan utama kajian ini adalah untuk mencadangkan dan menggunakan siput lumpur *Telescopium telescopium* sebagai agen penunjuk biologi logam-logam berat bagi kawasan pasang surut Semenanjung Malaysia. Lokasi kajian adalah meliputi 16 lokasi sampel di sepanjang perairan Pantai Barat Semenanjung Malaysia dan satu lokasi sampel dari perairan timur (Tumpat, Kelantan) Semenanjung Malaysia. Kepekatan purata logam-logam berat dalam keseluruhan tisu lembut *T. telescopium* berubah daripada 53.59 – 187.07 μ g/g berat kering untuk Cu, 65.11 – 155.38 μ g/g berat kering untuk Zn, 5.59 – 17.66 μ g/g berat kering untuk Ni dan 304.06 – 1062.19 μ g/g berat kering untuk Fe.

Siput *T. telescopium* yang telah disampel dari setiap satu lokasi telah dibedah dan diasingkan kepada tujuh bahagian iaitu kaki, tentakel sefalik, mantel, otot, insang, lebihan tisu lembut dan sekum pencerna. Kepekatan logam-logam berat dalam semua tisu ini diukur. Kajian ini juga menjalankan analisis bagi hubungan antara beberapa tisu lembut *T. telescopium* dengan persekitaran (iaitu sedimen), keputusan menunjukkan korelasi positif yang signifikan (p < 0.05) antara kadmium, kuprum,

besi, nikel, plumbum and zink dalam beberapa tisu lembut dan fraksi geokimia enam logam berat yang dikaji. Pemalar korelasi yang diperolehi mencadangkan beberapa tisu lembut berpotensi untuk digunakan sebagai organ penunjuk biologi (kuprum: mantel dan lebihan tisu lembut; besi: mantel, lebihan tisu lembut dan kaki; nikel: insang dan lebihan tisu lembut; plumbum: insang, lebihan tisu lembut dan sekum pencerna; zink: insang dan lebihan tisu lembut). Di dapati organ-organ tertentu dalam siput *T. telescopium* lebih berkesan untuk dijadikan agen penunjuk biologi daripada menggunakan keseluruhan tisu lembut untuk mengetahui aras kepekatan logam-logam yang dikaji di kawasan intertidal. Kajian yang dibuat untuk menentukan kadar logam dalam cengkerang kepada logam dalam tisu lembut menunjukkan cengkerang mempunyai darjah berubah-ubah yang tinggi terhadap kadmium, nikel dan plumbum berbanding bahagian tisu lembut *T. telescopium*. Oleh itu keputusan kajian menunjukkan cengkerang *T. telescopium* mempunyai darjah berubah-ubah yang rendah bagi besi, kuprum dan zink berbanding tisu-tisu lembut *T. telescopium*.

Kesimpulannya, taburan logam-logam dalam tisu-tisu lembut *T. telescopium* menunjukkan bahawa organ tertentu lebih berguna dan tepat sebagai penunjuk biologi bagi pencemaran logam-logam tertentu dalam kawasan intertidal. Cengkerang dan tisu lembut *T. telescopium* didapati sebagai agen penunjuk biologi yang berpotensi untuk logam kadmium, kuprum, besi, nikel, plumbum dan zink, manakala penggunaan cengkerang memerlukan kajian yang lebih lanjut.

ACKNOWLEDGEMENTS

First, greatly thanks to Our Almighty and Prosperous God for giving me strength and confidence to finish my study and face all over the difficulties

I most owe a favor to my supervisor, Dr Yap Chee Kong for his guidance and given me a lot of valuable and incalculable comments, advice and ideas. He is certainly part of my successful completion on my project. I certainly could not achieve until this stage without his unfailing inputs and consistent guides. Thank you very much. Hope God will bless you for the rest of your life.

I also would like to express my profound gratitude to my co-supervisor Dr Abdul Rahim Ismail and Dr Nor Azwady Abdul Aziz for their helpful advice, commenting and advising on my statistical analysis. They have co-supervised me to the best of their abilities.

Special thanks are also given to Mr Cheng Wan Hee and Mr Franklin Berandah who helped me a lot during the field trip and also in the laboratory. To all my friends of the Department of Biology, thank you very much.

Not forgetting my lovely and understanding husband, Mr Azlan bin Ahmad and all my sons, you all are the most source of inspiration and motivation. I could not make it without you all. I love you all.

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Yap Chee Kong, PhD Faculty of Science Universiti Putra Malaysia (Chairman)

Abdul Rahim Ismail, PhD Faculty of Science Universiti Putra Malaysia (Member)

Nor Azwady Abdul Aziz, PhD Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date :

Declaration

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

NOORHAIDAH BT ARIFIN

Date :

TABLE OF CONTENTSPage

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	ix
LIST OF TABLES	xiii
LIST OF FIGURES	xvii
PLATE	xviii

CHAPTER

1	INTRODUCTION	1
2	LITERATURE REVIEW	5
	2.1. Biology of Telescopium telescopium (Linnaeus, 1758)	5
	2.1.1.Taxonomy	5
	2.1.2. Species description	5
	2.1.3. Telescopium telescopium, Linnaeus, 1758	7
	2.1.4. Distribution of <i>T. telescopium</i>	8
	2.1.5. Ecology/ Way of Life	8
	2.1.6. Human uses	9
	2.2. Rational of Using Snail as a Biomonitor	10
	2.3. Heavy Metal Contamination in The Intertidal Area	14
	2.3.1. Speciation of Heavy metals in the sediment	16
	2.4. Environmental Chemistry of Heavy Metals and Their	17
	Accumulation in Aquatic Organisms	
	2.4.1. Cadmium in Aquatic Snail	17
	2.4.2. Copper in Aquatic Snail	18
	2.4.3. Lead in Aquatic Snail	20
	2.4.4. Nickel in Gastropods	22
	2.4.5. Zinc in Gastropods	22
	2.5. Past Studies of Snail as Biomonitors for Heavy Metals	23
	2.6. The Role of Gastropod Shells	24
3	MATERIALS AND METHODS	26
	3.1. Study Area	26
	3.2. Sampling procedure	26
	3.2.1. Telescopium telescopium	26
	3.2.2. Sediment	26
	3.3. Heavy metals analysis on Telescopium telescopium	29

Х

	3.3.1. Sample preparation for heavy metals analysis	29
	3.3.2. Sample digestion	31
	3.4. Heavy metals analysis on the sediment	32
	3.4.1. Sample preparation	32
	3.4.2. Sample digestion	32
	3.4.3. Speciation of Cd, Cu, Fe, Ni, Pb and Zn in	32
	sediment samples	22
	3.5. Determination of heavy metals (Cd, Cu, Fe, Ni, Pb and Zn)	33
	for biological and sediment samples.	25
	3.5.1. Quality Assurance/ Quality Control Activities	35
	3.5.2. Cleaning procedures 3.5.3. Blank	32 35
	3.5.4. Recovery test	35 35
	3.6. Calculations	35 36
	3.6.1. Allometric ratios	30 36
	3.6.2. Bioconcentration factor	30 37
	3.6.3. Coefficient of variation	
		38
	3.6.4. Statistical Analytical Procedures	38
4	RESULTS	39
	4.1. Heavy metals of intertidal sediments of Peninsular Malaysia	39
	4.1.1. Geochemical fractions (EFLE, acid reducible,	39
	oxidisable organic and resistant fraction of Cd,	
	Cu, Fe, Ni, Pb and Zn	
	4.1.2. Percentage of non-resistant and resistant fraction	54
	of Cd, Cu, Fe, Ni, Pb and Zn	
	4.1.3. Total Concentration of Cd, Cu, Fe, Ni, Pb and	54
	Zn	
	4.2. Concentration of heavy metals in the different soft tissues of	56
	Telescopium telescopium from 17 different sampling	
	locations	
	4.2.1. Correlation between heavy metals in different	62
	soft tissues and geochemical fraction of metals in	
	the surface sediment.	
	4.2.2. Concentration of Cd, Cu, Fe, Ni, P and Zn in the	64
	shell of <i>T.telescopium</i>	
	4.2.3. Bioconcentration Factors (BCF)	77
5	DISCUSSION	81
	5.1. Geochemical fraction of metals in the sediment	81
	5.1.1. Cadmium (Cd)	81
	5.1.2. Copper (Cu)	82
	5.1.3. Iron (Fe)	83
	5.1.4. Nickel (Ni)	84
	5.1.5. Lead (Pb)	84
	5.1.6. Zinc (Zn)	85
	5.2. Overall distributions of the geochemical fractions of Cd, Cu,	86
	Fe, Ni, Pb and Zn	
	5.3 Studies on correlation on geochemical fraction of Cd, Cu, Fe	88
	Ni, Pb and Zn	

5.4. Concentration of heavy metals in the different soft tissues and the shell of <i>Telescopium telescopium</i>	92
5.4.1. Concentration of heavy metals in the different soft tissues of <i>Telescopium telescopium</i> from 17 different sampling locations	92
5.4.2. Correlation between heavy metals in different soft tissues and geochemical fraction of metals in the surface sediment.	98
5.4.3. Concentration of Cd, Cu, Fe, Ni, P and Zn in the shell of <i>T.telescopium</i>	102
5.4.4. Correlation coefficients of metals in the shell and geochemical fraction in the surface sediment	105
5.4.5. Comparison between the accumulation of metals in the total shell and different soft tissues of <i>T</i> . <i>telescopium</i>	107
5.4.6. Bioconcentration Factor	109
CONCLUSION	111
REFERENCES	114
BIODATA OF STUDENT	134
LIST OF PUBLICATIONS	135

6

LIST OF TABLES

Table 2.1	Heavy metals concentrations in field collections of selected species of mollusk (Values shown are in mg/kg or ppm fresh weight [FW], dry weight [DW] or ash weight [AW].	Page 25
3.1	Positions (Global positioning system), sampling dates, for the intertidal sediments collected along the west coast of Peninsular Malaysia	27
3.2	Mean of shell width, shell height and volume of the shell of <i>T. telescopium</i> analyzed and descriptions of sampling sites in the intertidal area of Peninsular Malaysia	28
3.3	Correlation coefficients and comparative results of analyses of the direct aqua-regia and sequential extraction procedures on the sediment samples ($n = 51$) based on the log ₁₀ transformed (µg/g dry weight of Cu, Zn, Pb, Ni and Cd	35
3.4	Comparison of heavy metal concentrations between measured and certified values of Certified Reference Materials (CRM) of DOLT-3 Dogfish liver (National Research Council Canada) and Soil-5 (International Atomic Energy Agency, Soil-5, Vienna, Austria).	35
4.1	The Cd percentage of EFLE, acid reducible, oxidisable organic and resistant fraction (mean concentration \pm SE in μ g/g dry weight) and total Cd concentration (min-max in μ g/g dryweight) of intertidal sediment collected from 17 sampling locations	43
4.2	The Cu percentage of EFLE, acid reducible, oxidisable organic and resistant fraction (mean concentration \pm SE in μ g/g dry weight) and total Cu concentration (min-max in μ g/g dryweight) of intertidal sediment collected from 17 sampling locations	44
4.3	The Fe percentage of EFLE, acid reducible, oxidisable organic and resistant fraction (mean concentration \pm SE in μ g/g dry weight) and total Fe concentration (min-max in μ g/g dryweight) of intertidal sediment collected from 17 sampling locations	45
4.4	The Ni percentage of EFLE, acid reducible, oxidisable organic and resistant fraction (mean concentration \pm SE in μ g/g dry weight) and total Ni concentration (min-max in μ g/g dryweight) of intertidal sediment collected from 17 sampling location	46

4.5	The Pb percentage of EFLE, acid reducible, oxidisable organic and resistant fraction (mean concentration \pm SE in μ g/g dry weight) and total Pb concentration (min-max in μ g/g dryweight) of intertidal sediment collected from 17 sampling locations.	47
4.6	The Zn percentage of EFLE, acid reducible, oxidisable organic and resistant fraction (mean concentration \pm SE in μ g/g dry weight) and total Zn concentration (min-max in μ g/g dryweight) of intertidal sediment collected from 17 sampling locations	48
4.7	Pearson's correlation coefficients of dependent variables (Total aqua-regia (TOT), non-resistant (NR) and Resistant (R) of Cu, Zn, Pb, Ni and Cd) based on their $log_{10(X + 1)}$ transformed concentrations in $\mu g/g$ in the intertidal sediments of Peninsular Malaysia	49
4.8	A comparison of total concentrations of Cu Zn, Pb, Ni and Cd in the sediments of Malaysian studies ($\mu g/g$ dry weight)	55
4.9	Increasing order of Cd concentrations in the different soft tissues of <i>T. telescopium</i> (μ g/g dryweight) from each sampling location	56
4.10	Increasing order of Cu concentrations in the different soft tissues of <i>T. telescopium</i> (μ g/g dryweight) from each sampling location	57
4.11	Increasing order of Fe concentrations in the different soft tissues of <i>T. telescopium</i> (μ g/g dryweight) from each sampling location	58
4.12	Increasing order of Ni concentrations in the different soft tissues of <i>T. telescopium</i> (μ g/g dryweight) from each sampling location	59
4.13	Increasing order of Pb concentrations in the different soft tissues of <i>T. telescopium</i> (μ g/g dryweight) from each sampling location	60
4.14	Increasing order of Zn concentrations in the different soft tissues of <i>T. telescopium</i> (μ g/g dryweight) from each sampling location	61
4.15	Mean concentrations (μ g/g dry weight ± SE) of Cd, Cu, Fe, Ni, Pb and Zn from 17 sampling locations in the different soft tissues of <i>T. telescopium</i>	62

4.16	Results of Pearson's Correlation Analysis, relationships between Cd concentration in the different soft tissues, different parts of shell, total shell and geochemical fraction in the sediment	62
4.17	Results of Pearson's Correlation Analysis, relationships between Cu concentration in the different soft tissues and geochemical fraction in the sediment	63
4.18	Results of Pearson's Correlation Analysis, relationships between Fe concentration in the different soft tissues of <i>T</i> . <i>telescopium</i> and geochemical fraction in the sediment	63
4.19	Results of Pearson's Correlation Analysis, relationships between Ni concentration in the different soft tissues of <i>T</i> . <i>telescopium</i> and geochemical fraction in the sediment	63
4.20	Results of Pearson's Correlation Analysis, relationships between Pb concentration in the different soft tissues of <i>T</i> . <i>telescopium</i> and geochemical fraction in the sediment	64
4.21	Results of Pearson's Correlation Analysis, relationships between Zn concentration in the different soft tissues of <i>T</i> . <i>telescopium</i> and geochemical fractions in the sediment	64
4.22	Comparisons of Cd, Cu, Fe, Ni, Pb and Zn (mean $\mu g/g$ dry weight \pm standard error) in the different parts of the shell of mudflat snail <i>T. telescopium</i> (n=17)	68
4.23	Overall mean concentration (mean $\mu g/g$ dryweight \pm standard error) of the average of metals in the three different parts of the shell	68
4.24	Range concentrations (μ g/g dry weight) of Cd, Cu, Fe, Ni, Pb and Zn in the shell in some molluscs' species in previous studies	68
4.25	Pearson's Correlation Coefficients Analysis between Cd, Cu, Fe, Ni, Pb and Zn (log_{10} transformed) in the shell and geochemical fraction (EFLE, oxidisable organic, acid reducible, non-resistant, resistant and total concentrations) of the surface sediment	69
4.26	Comparison between coefficient of variation (%) of heavy metal concentrations in the different soft tissues and total shell of <i>T. telescopium</i>	69
4.27	The mean concentration of Cd, Cd, Fe, Ni, Pb and Zn in the total shells of <i>Telescopium telescopium</i> collected from 17 different sampling locations of intertidal area of	70

XV

Peninsular Malaysia (N=3)

- 4.28 Mean concentration (μg/g dry weight) of Cd, in the 71 different soft tissues, total shell and ratio (shell/different soft issues) of *T. telescopium* collected from 17 sampling locations
- 4.29 Mean concentration (μ g/g dry weight) of Cu, in the 72 different soft tissues, total shell and ratio (shell/different soft issues) of *T. telescopium* collected from 17 sampling locations
- 4.30 Mean concentration (μg/g dry weight) of Fe, in the 73 different soft tissues, total shell and ratio (shell/different soft issues) of *T. telescopium* collected from 17 sampling locations
- 4.31 Mean concentration (μ g/g dry weight) of Ni, in the 74 different soft tissues, total shell and ratio (shell/different soft issues) of *T. telescopium* collected from 17 sampling locations
- 4.32 Mean concentration (μ g/g dry weight) of Pb, in the 75 different soft tissues, total shell and ratio (shell/different soft issues) of *T. telescopium* collected from 17 sampling locations
- 4.33 Mean concentration (μg/g dry weight) of Zn in the 76 different soft tissues, total shell and ratio (shell/different soft issues) of *T. telescopium* collected from 17 sampling locations
- 4.34 Macroconcentrators, microconcentrators and 77 deconcentrators and BCF Values of the shell and different soft tissues of *T. telescopium* for Cd, Cu, Fe, Ni, Pb and Zn.
- 4.35 Pearson's correlation coefficients of dependent variables 78 (Total aqua-regia (TOT), non-resistant (NR) and Resistant (R) of Cu, Zn, Pb, Ni and Cd) based on their $log_{10(X + 1)}$ transformed concentrations in $\mu g/g$ in the intertidal sediments of Peninsular Malaysia

xvi

LIST OF FIGURES

Figures 3.1	Map showing 17 sampling location (in numbers) of the intertidal area of Peninsular Malaysia	Page 29
3.2	Soft tissues of T. telescopium	30
3.3	Three parts of shell of <i>T. telescopium</i>	31
3.4	Sequential extraction procedure adopted from the modified method of Badri and Aston (1983)	34
4.1	Geochemical fraction of EFLE, Acid reducible, oxidisable organic and resistant (Cd, Cu and Fe) from 17 intertidal area of Peninsular Malaysia in percentage	52
4.2	Geochemical fraction of non-resistant and resistant (Ni, Pb and Zn) from 17 intertidal area of Peninsular Malaysia in percentage	49
4.3	Mean concentration of Cd and Cu (μ g/g dryweight ± SE) of different parts of shell from 17 sampling locations (N=3)	65
4.4	Mean concentration of Fe and Ni (μ g/g dry weight ± SE) of different parts of shell from 17 sampling locations (N=3)	66
4.5	Mean concentration of Pb and Zn (μ g/g dry weight ± SE) of different parts of shell from 17 sampling locations (N=3)	67

xvii

Plate

Plate 1a and 1b	The shell description of <i>T. telescopium</i>	6
Plate 2	The shell covered with barnacles	6
Plate 3	Multispiral operculum	6
Plate 4	Map of Indo Pacific Area	8
Plate 5	Foot of <i>T. telescopium</i>	5
Plate 6	Soft tissues of <i>T. telescopium</i>	30

CHAPTER 1

INTRODUCTION

It has become a common practice, in many monitoring programmes, to use aquatic organisms as biomonitors because of temporal and spatial variability of the chemical elements in dissolved and particulate phases of aqueous systems (Phillips and Rainbow, 1993). Furthermore, all aquatic invertebrates accumulate trace metals in their tissues, whether or not these metals are essential to metabolism (Rainbow, 2002). Some of the intertidal gastropods that inhabit rocky shores or sediments fulfill most of the requirements of good biomonitors (Phillips and Rainbow, 1994); however, it is important that they accumulate metals in proportion to metal concentrations in the environment because only the bioavailability fraction of metals in sediments can have an impact on metal toxicity and accumulation (Ying et al., 1993) and also metal concentrations in sediments are high and relatively invariant with time (Mastala et al., 1992). In addition to that, gastropods were employed as biomonitors to determine the effect of marine pollution (Bu Olayan et al., 2001; Ismail and Safahieh, 2004; Walsh et al., 1995; Ying et al., 1993). At the same time, gastropod snail, Telescopium telescopium is used in this study because their direct contact to the intertidal sediments. Moreover, intertidal sediments can accumulate large amounts of organic matter and can act as an important reservoir of trace metals, particularly in regions of intense shellfish culture activity where natural sedimentation is enhanced by biodeposition (Sokolowski et al., 2005). On the other hand, organisms often exhibit greater spatial variation in metal concentration compared to sediments and are more reliable tool for identifying sources of contamination (Thompson et al., 1983).

According to some authors (Marigomez and Ireland, 1989; Pip, 1992; Tessier *et al.*, 1994), gastropods also have the ability to concentrate the bioavailable heavy metals from their ambient environment. On the other hand, the concentrations of heavy metals in water may vary considerably depending on annual and seasonal fluctuations (SCEP, 1971). Therefore, the measurement in the gastropods can provide an integrated measurement of metal bioavailability of contaminant (Rainbow, 1995). It has already been demonstrated (Langston and Zhou, 1987; Marigomez and Ireland, 1989) that *Littorina littorea* is an excellent indicator species for monitoring environmental with heavy metal contamination particularly cadmium.

It is known that both terrestrial and marine gastropod species accumulate heavy metals; therefore they are suitable for detection of environmental heavy metal pollution as biomonitors organisms (Coughtrey *et al.*, 1977; Leatherland *et al.*, 1973; Navrot *et al.*, 1970; Peden *et al.*, 1973; Stenner and Nickless, 1975). *T. telescopium* was chosen for this study not only because of their abundance but also because the maesurement of metals levels in this organisms might give an idea of the level of metal contamination which might be present in this intertidal area of Peninsular Malaysia. *T. telescopium* is also commonly used as local food. The Telescope-shell creeper is an abundant, gregarious, spiral mollusk that occurs on estuarine mudflats (Nair and Saraswathy, 1971). According to Ismail and Safahieh (2004) *T. telescopium* can be suggested as biomonitoring agent for assessing copper and zinc in the river. Even though *T. telescopium* did not show positive correlation with the levels of metals in surface sediments many other characters such as sessile and sedentary which are representative of the study site, hardy and tolerating high concentrations of pollutants and large ranges in salinity, abundant, easy to identify

2

and enough tissues for analysis contaminants, have made the *T. telescopium* a potential biomonitoring agent (Ismail and Safahieh, 2004) since it fulfils many of the selected criteria of an ideal biomonitor. However, future validation is required to test its usefulness as a good biomonitor of heavy metal pollution. Uniquely, this study used different soft parts of *T. telescopium* in order to gain some information on the ecological distribution of *T. telescopium* along the west ccoast of Peninsular Malaysia and redistribution of heavy metals in snail tissues. On the other hand, accumulation of metals varies from organ to organ in invertebrates depending upon the balance between uptake and elimination of *T. telescopium* are not found in the literature.

Since, metals accumulated in the total soft tissues could be affected by many biotic and abiotic factors apart from pollution, therefore the selection of a particular suitable tissue/organ therefore would increase the accuracy of the determination of metal bioavailability and contamination (Yap *et al.*, 2006). Furthermore, knowledge on the distribution of metals in isolated organs/tissues of marine organisms is useful in the identification of specific organs that may tend to accumulate higher levels of heavy metals (Szefer and Szefer, 1990). This particular information has not been reported yet in the literature for *T. telescopium*.

The west coast of Peninsular Malaysia was focused upon because there is no detailed study of metals in this snail around this region. At the same time, comparisons of contaminant levels in a biomonitoring agent collected from different geographical sites will provide on the status of the pollutant contamination of coastal areas of Peninsular Malaysia.

In a number of previous investigations on the metal pollution of coastal sites and estuaries, various number of the indigenous biota have been engaged to evaluate the bioavailability levels of metals in the marine environment (Cubadda *et al.*, 2001). The use of bivalve or gastropod molluscs looks attractive as these organisms accumulate metals from all environmental compartments (i.e. from the aqueous medium and through ingestion – from food and inorganic particulate material) and heavily concentrate them (Phillips, 1978). In addition to that, sediment samples cannot provide enough information on bioavailability, and then analysis of the snail would give a better answer on the bioavailability of metal which is concerns.

The objectives of this study are:

- a) To determine the heavy metal distribution in different parts of soft tissues and shells of snail, *T. telescopium*
- b) To study the relationship of metal concentrations between the snail and their environmental surface sediment.

CHAPTER 2

LITERATURE REVIEW

2.1 Biology of Telescopium telescopium

2.1.1 Taxonomy

Telescopium telescopium is classified into the Family Potamididae (Houbrick, 1991).

Below is the classification of *T. telescopium*.

Kingdom : Animalia
Phyllum : Mollusca (Linnaeus, 1758)
Class : Gastropoda (Courier, 1797)
Subclass : Prosobranchia
Order : Mesogastropoda
Superfamily : Cerithiacea
Family : Potamididae
Subfamily : Potamidinae
Genus : Telescopium (Montfort, 1810)
Species : Telescopium telescopium (Linnaeus,

1758)

2.1.2 Species description

The Telescope-shell Creeper has a very distinctive, large, telescope-shaped shell. It grows up to 65-110 mm in length. Its shell is large and conical in shape, with a broad and flat base. The shell sides are straight (Plate 1a and Plate 1b). The shell sculpture consists of numerous flat-sided whorls and spiral grooves. The shell base has concentric cords, and a deep channel around a short, twisted, columellar pillar. The shell is beautifully patterned under the thick layer of mud that usually covers it. The shell is also sometimes covered with barnacles and other encrusting animals (Plate 2) and can remain out of water for long periods (7 days) (Tan and Chou, 2000).

Plate 1a and 1b : The shell description of *T. telescopium*

Plate 2. The shell covered with barnacles

Plate 3 : Multispiral oprculum

