

UNIVERSITI PUTRA MALAYSIA

EFFECT OF LIGHT INTENSITY ON THE GROWTH AND CHLOROPHYLL CONTENT OF PENNYWORT (*HYDROCOTYLE BONARIENSIS* COMM. EX LAM.)

LIM GUAT GOH

FS 2007 52

EFFECT OF LIGHT INTENSITY ON THE GROWTH AND CHLOROPHYLL CONTENT OF PENNYWORT (HYDROCOTYLE BONARIENSIS COMM. EX LAM.)

By

LIM GUAT GOH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

July 2007

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECT OF LIGHT INTENSITY ON THE GROWTH AND CHLOROPHYLL CONTENT OF PENNYWORT (HYDROCOTYLE BONARIENSIS COMM. EX LAM.)

By

LIM GUAT GOH

July 2007

Chairman: Hishamuddin Omar, PhD

Faculty: Science

Pennywort (*Hydrocotyle bonariensis*) is one of the most common vegetables and medicinal herbs used in Malaysia. It was believed to help in wound-healing, blood circulation, and has effects on blood pressure, tumours and depression. Most of the pennyworts used come from the wild or are imported. Lack of knowledge regarding the agronomical parameters of this plant may affect the medicinal value of the herb, cause extinction, or loss of foreign exchange in the herb trade. This study examined the effects of light intensities and fertilizers on the growth and chlorophyll content of the pennywort.

A 2x3 factorial using complete randomized block design experiment with five replicates was carried out. Thirty boxes (32 cm x 42 cm x 15 cm) of pennywort were fertilized weekly under three fertilizer conditions: organic (50 gm⁻²), inorganic (12.5 gm⁻²), and control. They were grown under moderate (542.6 μ mols⁻¹m⁻²) and high (1089.2 μ mols⁻¹m⁻²) light intensities.

Results showed that leaf area was the most suitable method to determine growth. The result also exhibited that chlorophyll content in *H. bonariensis* was maximum in the third week of growth for all treatment. For productivity, *H. bonariensis* gave higher productivity compared to *Centella asiatica*. The most significant result was that plant in moderate light intensity was better in all growth aspects and chlorophyll content (p<0.05), except density. However, due to the bigger sized leaves, this disadvantage was negligible.

Results showed that rate of fertilizing at 50 gm⁻² of organic fertilizer weekly or 12.5 gm⁻² inorganic fertilizers weekly was adequate to maintain healthy growth. The experimental results indicate that both organically and inorganically fertilized plants were significantly higher in all growth aspects compared to the control plant (p<0.05). However, there were no significant effects of fertilizers on plant's chlorophyll content.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN KEAMATAN CAHAYA KE ATAS PERTUMBUHAN DAN KANDUNGAN KLOROFIL PEGAGA (HYDROCOTYLE BONARIENSIS COMM. EX LAM.)

Oleh

LIM GUAT GOH

Julai 2007

Pengerusi: Hishamuddin Omar, PhD

Fakulti: Sains

Pegaga (*Hydrocotyle bonariensis*) adalah herba yang umumnya digunakan di Malaysia sebagai ulam dan ubatan. Ia dipercayai dapat membantu dalam pemulihan luka, peredaran darah, dan mengurangkan tekanan darah, radang, tumor dan depresi. Sumber pegaga untuk tujuan tersebut diperolehi dari liar ataupun diimport. Kekurangan pengetahuan tentang parameter agronomi tumbuhan ini mungkin mempengaruhi nilai perubatan herba ini, menyebabkan kepupusannya, atau kerugian pertukaran matawang asing dalam perdagangan herba ini. Kajian ini meninjau kesan keamatan cahaya dan baja ke atas pertumbuhan dan kandungan klorofil pegaga.

Satu eksperimen menggunakan rekabentuk 2x3 faktorial blok rawak lengkap dengan lima replikat telah dijalankan. Tiga puluh kotak pegaga (32 cm x 42 cm x 15 cm) telah dibaja setiap minggu di bawah tiga keadaan pembajaan iaitu: organik (50gm⁻²), bukan organik (12.5gm⁻²), dan kawalan. Pegaga itu telah ditumbuhkan di bawah keamatan cahaya sederhana (542.6 μ mols⁻¹m⁻²) dan tinggi (1089.2 μ mols⁻¹m⁻²)

Hasil kajian pertumbuhan mendapati kaedah keluasan daun merupakan kaedah terbaik untuk penentuan tumbesaran. Kajian juga mendapati kandungan klorofil dalam *H. bonariensis* adalah maksimum pada minggu ketiga untuk semua rawatan. Dari segi produktiviti, *H. bonariensis* adalah lebih tinggi produktivitinya berbanding *Centella asiatica*. Penemuan yang paling signifikan ialah tumbuhan bawah keamatan cahaya sederhana adalah lebih baik dalam semua aspek pertumbuhan dan kandungan klorofil (p<0.05), kecuali aspek ketumpatan tumbuhan. Namun, disebabkan saiz daun yang lebih besar, kekurangan ini dapat diatasi.

Kajian ini mendapati bahawa pembajaan dengan kadar 50 gm⁻² baja organik atau 12.5 gm⁻² baja bukan organik setiap minggu dapat menampung pertumbuhan yang sihat. Didapati juga bahawa tumbuhan di bawah pembajaan organik dan bukan organik adalah tinggi secara signifikan dalam semua aspek pertumbuhan berbanding kawalan (p<0.05). Namun tiada kesan signifikan untuk pembajaan ke atas kandungan klorofil tumbuhan diperolehi.

ACKNOWLEDGEMENTS

No research can be carried out without the assistance and support of various parties and individuals. I received lots of help, suggestions, and encouragement to carry out this research. I would like to take this opportunity to thank those who had contributed directly or indirectly in my research.

Thanks to the Teacher Education Division, Ministry of Education Malaysia for the scholarship offered. With the scholarship as financial support, I could concentrate fully in my studies.

Deepest appreciation to Dr. Hishamuddin Omar, my supervisor, for brought me into the interesting world of plant physiology. His dedication and patience in supervising, guiding, advising and demonstrating has taught me what "Leadership by example" means. He is great not only with ideas and wide range of knowledge, but also with moral support.

Not to forget my hearties gratitude to Dr. Misri Kusnan, my co-supervisor. Great ideas were given by him during discussions and enquiries. His answers were always short, but precise and practical.

I am grateful to En. Jamal and Pn. Zaleha of University Agriculture Park, UPM for permission given to use the facilities in the nursery. The assistance and cooperation given especially in providing the cuttings of pennywort was remembered.

Applauses to my three friends, Chong Siew Fong, Lau Kar Yin, and Ravi a/l Munisamy for trying out their research with me. Two semesters of working experience with you all made me feel not alone in my research work. Not forgetting my course mate - Wee Pou Lis for her moral support and encouragement.

I owe my gratitude to one of my colleague from the English Language Unit, Language Department, Institut Perguruan Tun Hussein Onn for her kindness in read through my writing.

Last but not least, I would like to say thanks to my family members who had given me endless support, encouragement, time and energy during my study.

I certify that an Examination Committee met on 6th July 2007 to conduct the final examination of Lim Guat Goh on her Master of Science thesis entitled "Effect of light intensity on the growth and chlorophyll content of pennywort (*Hydrocotyle bonariensis* Comm. ex Lam.)" in accordance with Universiti Putra Malaysia (Higher Degree) Act 1980 and Universiti Putra Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Aziz Arshad, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Faridah Abdullah, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Faridah Qamaruz Zaman, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mashhor Mansor, PhD

Professor School of Biological Sciences Universiti Sains Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Hishamuddin Omar, PhD

Lecturer Faculty of Science Universiti Putra Malaysia (Chairman)

Misri Kusnan, PhD Lecturer Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 January 2008

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

LIM GUAT GOH

Date:

TABLE OF CONTENTS

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	viii
DECLARATION	Х
LIST OF TABLES	XV
LIST OF FIGURES	xviii
LIST OF PLATES	xix
LIST OF ABBREVIATIONS	XX

CHAPTER

1	INTE	RODUC	ΓΙΟΝ	1	
2	LITE	LITERATURE REVIEW			
	2.1	Researc	ch plant: Hydrocotyle bonariensis Comm. Ex	6	
		Lam.			
		2.1.1	Classification	6	
		2.1.2	Systematic status of <i>Hydrocotyle bonariensis</i>	7	
		2.1.3	Ambiguity between Centella asiatica and	7	
			Hydrocotyle bonariensis		
		2.1.4	Vernacular names	8	
		2.1.5	Origin and geographic distribution	9	
		2.1.6	Plant description	9	
		2.1.7	Habitat	10	
		2.1.8	Propagation	11	
		2.1.9	Pest	11	
		2.1.10	Chemical/nutritional constituents	12	
		2.1.11	Pharmacology and clinical properties	13	
		2.1.12	Pioneer study on the production of	15	
			Centella asiatica/ Hydrocotyle bonariensis		
	2.2	Plant g	rowth	16	
		2.2.1	Definition of growth	16	
		2.2.2	Method of growth measurement	17	
		2.2.3	Growth curve	17	
	2.3	The im	portance of soil testing and plant analysis for	18	
		nutritio	nal diagnostic		
		2.3.1	Soil testing	18	
		2.3.2	Plant analysis	19	
	2.4	Role of	chlorophyll in photosynthesis	20	
		2.4.1	Photosynthesis	20	
		2.4.2	Types of chlorophyll	21	
		2.4.3	The chemistry of chlorophyll	22	
		2.4.4	Absorption spectra of the chlorophylls	23	
		2.4.5	Determination of chlorophyll	24	

2.5	Factors	s affecting plant growth	24
	2.5.1	Light	25
	2.5.2	Nutrient	30
	2.5.3	Temperature	43
	2.5.4	Water	43
МЕТ	HODOI	LOGY	45
3.1	Locatio	on	45
3.2	Duratio	on	45
33	Experi	mental design	45
34	Treatm	ient	46
3 5	Prenara	ation of study plot	47
5.0	3 5 1	Shelter	47
	352	Plant	48
36	J.J.2 Manag	ement	-10 /10
5.0	3.6.1	Fertilization	/10
	3.0.1	Irrigation	50
	2.6.2	Post control	50
	3.0.3	Wooding	51
27	5.0.4 Toggin	weeding	51
3.1			51
	3./.1	Lagging Someling	51
20	3./.2 Determ	Sampling	55
3.8	Determ	ination of soil physical properties	23
	3.8.1	Determination of soil pH	54
	3.8.2	Determination of soil moisture	54
	3.8.3	Determination of soil organic matter	55
• •	3.8.4	Determination of soil texture	56
3.9	Soil ch	emical properties analysis	58
	3.9.1	Kjeldahl digestion of soil sample for	58
		determination of total nitrogen, total	
		phosphorous, and total potassium	
	3.9.2	Water bath extraction for determination of	59
		water soluble nitrogen, water soluble	
		phosphorous, and water soluble potassium	
	3.9.3	Determination of soil total nitrogen	60
	3.9.4	Determination of soil water soluble nitrogen	61
	3.9.5	Determination of soil nitrate	61
	3.9.6	Determination of soil total phosphorous	62
	3.9.7	Determination of soil water soluble	63
		phosphorous	
	3.9.8	Determination of soil total potassium	63
	3.9.9	Determination of soil water soluble	63
		potassium	
3.10	Plant n	utrient analysis	64
2.10	3 10 1	Kieldahl digestion for leaf sample before	64
	2.10.1	determination of total nitrogen total	01
		phosphorous and total potassium	
		phosphorous, and total potassium	

3

	3.10.2	Water bath extraction for leaf sample before	64
		determination of water soluble nitrogen,	
		nitrate, water soluble phosphorous, and water	
		soluble potassium	
	3.10.3	Determination of leaf total nitrogen	64
	3.10.4	Determination of leaf water soluble nitrogen	65
	3.10.5	Determination of leaf nitrate	65
	3.10.6	Determination of leaf total phosphorous	65
	3.10.7	Determination of leaf water soluble	65
		phosphorous	
	3.10.8	Determination of leaf total potassium	66
	3.10.9	Determination of leaf water soluble	66
		potassium	
3.11	Measure	ement of plant growth	66
	3.11.1	Petiole height	66
	3.11.2	Leaf width	66
	3.11.3	Leaf length	67
	3.11.4	Leaf area	67
	3.11.5	Appearance	68
	3.11.6	Determination of growth phases and relative	69
		petiole height/ leaf width/ leaf length/ leaf	
		area growth rate	
	3.11.7	Density of plant	70
	3.11.8	Biomass	70
	3.11.9	Yield	71
3.12	Determi	nation of chlorophyll content	71
	3.12.1	Preparation of chlorophyll extract	71
	3.12.2	Absorbance spectrum reading of chlorophyll	72
	3.12.3	Calculation of chlorophyll concentration	72
3.13	Measure	ement of weather and supportive parameters	73
3.14	Statistical analysis		74
		-	
RESU	ULTS		75
4.1	Physical	l properties of soil	75
	4.1.1	pH	75
	4.1.2	Moisture	76
	4.1.3	Organic matter	77
	4.1.4	Soil texture	78
4.2	Chemica	al properties of soil	79
	4.2.1	Soil total nitrogen	79
	4.2.2	Soil water soluble nitrogen	81
	4.2.3	Soil nitrate	82
	4.2.4	Soil total phosphorous	83
	4.2.5	Soil water soluble phosphorous	85
	4.2.6	Soil total potassium	86
	4.2.7	Soil water soluble potassium	87
	4.2.8	Soil N: P: K ratio	89

4

	43	Plant tissi	ie nutrients	89
		4.3.1	Leaf total nitrogen	90
		432	Leaf water soluble nitrogen	91
		433	Leaf nitrate	92
		434	Leaf total phosphorous	93
		4 3 5	Leaf water soluble phosphorous	94
		436	Leaf total potassium	95
		437	Leaf water soluble potassium	96
		4.3.8	Leaf N: P: K ratio	97
	4.4	Growth o	fplant	97
		4.4.1	Leaf appearance	98
		4.4.2	Leaf physical measurement	102
		4.4.3	Quantity aspects of leaf	114
		4.4.4	Dry weight/ fresh weight to moisture ratio	121
		4.4.5	Leaf blade weight: petiole weight ratio	122
	4.5	Chlorophy	yll content	123
		4.5.1	Chlorophyll <i>a</i>	123
		4.5.2	Chlorophyll <i>b</i>	125
		4.5.3	Total chlorophyll	126
		4.5.4	Chlorophyll <i>a</i> : chlorophyll <i>b</i> ratio	128
		4.5.5	Leaf discs fresh weight	130
	4.6	Weather a	and supportive parameters	132
		4.6.1	Air temperature	132
		4.6.2	Light intensity	132
		4.6.3	Relative humidity	133
		4.6.4	Transpiration	134
		4.6.5	Diffusion resistance	135
		4.6.6	Precipitation	136
		4.6.7	Duration of sunshine	136
5	DISC	USSION		137
	5.1	Environm	ental parameters and plant growth	137
	5.2	Shoot em	ergence, leaf development, and leaf	138
		senescenc	e i i i i i i i i i i i i i i i i i i i	
	5.3	Leaf phys	ical measurement	144
	5.4	Chloroph	yll content	146
	5.5	Productiv	ity	147
	5.6	Nutrients	status in <i>H. bonariensis</i> throughout the study	149
	5.7	Profit esti	mation	151
	5.8	Overall m	anagement of culture	152
6	CON	CLUSION		154
BIBLIOGR	APHY			156
APPENDIC	ES			169
BIODATA	BIODATA OF THE AUTHOR 277			277

LIST OF TABLES

Table		Page
3.1	Type of treatment in the study plot	46
3.2	Information on tagging	52
3.3	Time table of pipette for different soil fractions	57
3.4	Leaf texture chart	68
3.5	Leaf shape chart	69
4.1.1	Weekly mean soil pH and percentage of differences	76
4.1.2	Weekly mean soil moisture and percentage of differences	77
4.1.3	Weekly mean soil organic matter and percentage of differences	78
4.1.4	Soil texture	79
4.2.1	Weekly mean soil total nitrogen and percentage of differences	80
4.2.2	Weekly mean soil water soluble nitrogen and percentage of differences	82
4.2.3	Weekly mean soil nitrate and percentage of differences	83
4.2.4	Weekly mean soil total phosphorous and percentage of differences	84
4.2.5	Weekly mean soil water soluble phosphorous and percentage of differences	86
4.2.6	Weekly mean soil total potassium and percentage of differences	87
4.2.7	Weekly mean soil water soluble potassium and percentage of differences	88
4.2.8	Weekly N: P: K ratio	89
4.3.1	Weekly mean leaf total nitrogen and percentage of differences	90
4.3.2	Weekly mean leaf water soluble nitrogen and percentage of differences	91
4.3.3	Weekly mean leaf nitrate and percentage of differences	92

4.3.4	Weekly mean leaf total phosphorous and percentage of differences	93
4.3.5	Weekly mean leaf water soluble phosphorous and percentage of differences	94
4.3.6	Weekly mean leaf total potassium and percentage of differences	95
4.3.7	Weekly mean leaf water soluble potassium and percentage of differences	96
4.3.8	Weekly mean leaf N: P: K ratio	97
4.4.1	Mean relative petiole height growth rate and percentage of differences	105
4.4.2	Mean relative leaf width growth rate and percentage of differences	108
4.4.3	Mean relative leaf length growth rate and percentage of differences	111
4.4.4	Mean relative leaf area growth rate and percentage of differences	114
4.4.5	Weekly mean leaf density and percentage of differences	116
4.4.6	Weekly mean fresh biomass per leaf and percentage of differences	117
4.4.7	Weekly mean dry biomass per leaf and percentage of differences	119
4.4.8	Total yield and percentage of differences	120
4.4.9	Mean dry weight/ fresh weight to moisture ratio	122
4.4.10	Leaf blade weight: petiole weight ratio	122
4.5.1	Weekly mean chlorophyll <i>a</i> concentration and percentage of differences	124
4.5.2	Weekly mean chlorophyll <i>b</i> concentration and percentage of differences	126
4.5.3	Weekly mean total chlorophyll concentration and percentage of differences	128
4.5.4	Weekly mean chlorophyll <i>a</i> : chlorophyll <i>b</i> ratio and percentage of differences	130
4.5.5	Weekly mean leaf discs fresh weight and percentage of differences	131
4.6.1	Mean air temperature at different time in a day	132

4.6.2	Mean light intensity at different time in a day	133
4.6.3	Mean relative humidity different time in a day	134
4.6.4	Mean transpiration at different time in a day	135
4.6.5	Mean diffusion resistance at different time in a day	135
5.1	Nutrient status of spinach, lettuce and pennywort	151
5.2	Profit estimation (RM) over 1 m ² Hydrocotyle bonariensis	152

LIST OF FIGURES

Figure		Page
2.1	Chemical equation for photosynthetic reaction	21
2.2	Molecular structures of photosynthetic pigments	22
2.3	Absorption spectra of chlorophyll a and chlorophyll b	24
3.1	Colour tone chart	68
4.4.1	Leaf appearance (colour) development	99
4.4.2	Leaf appearance (texture) development	100
4.4.3	Leaf appearance (shape) development	102
4.4.4	Daily mean petiole height	103
4.4.5	Daily mean leaf width	106
4.4.6	Daily mean leaf length	109
4.4.7	Daily mean leaf area	112
4.5.1	Weekly mean chlorophyll <i>a</i> concentration	123
4.5.2	Weekly mean chlorophyll <i>b</i> concentration	125
4.5.3	Weekly mean total chlorophyll concentration	127
4.5.4	Weekly mean chlorophyll <i>a</i> : chlorophyll <i>b</i> ratio	129
4.5.5	Weekly mean leaf discs fresh weight	130

LIST OF PLATES

Plate			Page
1	Cen	ntella asiatica	8
2	Нуа	drocotyle bonariensis	8
3	Tag	gging on plant	52
4	Mea	asurement of plant growth	67
	а	Petiole height	67
	b	Leaf width	67
	c	Leaf length	67
	d	Leaf area	67
5	Lea	if texture	99
	а	Waxy, smooth, thin, and soft	99
	b	Dull, rough, thick, and hard/fragile	99
6	Lea	if shape	101
	а	Folded umbrella	101
	b	Half folded umbrella	101
	c	Circle/oval	101

LIST OF ABBREVIATIONS

С	Carbon
СНО	Aldehyde group
CH ₂ O	Simple sugar
CH ₃	Methyl group
CO ₂	Carbon dioxide
CuSO ₄	Copper sulphate
Fe ²⁺	Ferric
Fe ³⁺	Ferous
Н	Hydrogen
H ₂ O	Hydrogen oxide/ Water
H_2O_2	Hydrogen peroxide
H_2PO_4	Dihydrogen phosphate
H_2S	Hydrogen sulfide
HC1	Hydrogen chloride
HPO ₄	Monohydrogen phosphate
Κ	Potassium
KC1	Potassium chloride
KNO ₃	Potassium nitrate
Mg	Magnesium
Ν	Nitrogen
$N_2H_6SO_4$	Hydrazine sulphate
N ₂ O	Nitrous oxide
NaOH	Sodium hydroxide

NED	N-1-naphthylethylenediamine dihydrochloride
$NH_2C_6H_4SO_4NH_2$	Sulpanilamide
NH ₃	Ammonia
$\mathrm{NH_4}^+$	Ammonium ion
NH ₄ Cl	Ammonium chloride
NO ₂	Nitrite
NO ₃	Nitrate
0	Oxygen atom
O ₂	Oxygen molecule
Р	Phosphorous
SO_4^{2-}	Sulphate
ZnSO ₄	Zinc sulphate
ATP	Adenosine triphosphate
RNA	Ribonucleic acids
DNA	Deoxyribonucleic acid
α	Alpha
β	Beta
γ	Gamma
μ	Miu
min	Minute
S	Second
cm	Centimeter
m	Meter
nm	Nanometer

mg	Milligram
g	Gram
kg	Kilogram
gm ⁻²	Gram over meter square
kgm ⁻²	Kilogram over meter square
ml	Mililitre
°C	Degree Celcius
ppm	Part per million
р	Probability
%	Percent
>	Greater than
<	Less than
USD	United State Dollar
RM	Ringgit Malaysia
O.D.	Absorbance density

CHAPTER 1

INTRODUCTION

Earth is a planet that supports life. There are a very rich biodiversity of living things on Earth. According to Handa (2005), six of the world's eighteen biodiversity hotspots are located in Asia, and Peninsula Malaysia is one of it having 12 000 plant species. This makes Malaysia one of the world's 12 "mega diversity" countries that are rich in variety of plant species unexploited. Among these plant species, it is estimated that there are about 1230 species of plants that contain medicinal values (Muhamad and Mustafa, 1992).

People live in rural area of Asia Pacific used the plants growing close to their living, for example homes, in the open fields, waste lands, nearby forest area to cure and relieve many ailments. These practices lead to various Asian systems of medicine, including Ayurveda of India, Unani system of Middle East and Far East Asia, Yin and Yang principles of Chinese herbal medicine, Jamu of Indonesia and others (Sharma *et al.*, 1998; Natesh, 2000). These systems are still in use today.

Herbal medicine has been widely use for more than forty years in western countries (Griggs, 1981). People resort to herbal medicine for some reasons. According to Abas (2000), for a certain fraction of the population, herbal use is intrinsically part of their culture and belief, and the relatively low cost and easy availability of herbal medicine makes it affordable to the lower income group. He also says that the general public's impression of herbals being natural, safer and less harmful and that

they do not contain chemicals also play an important role in the use of herbal medicine.

With the advancement and development of modern medicine, people have shifted to modern medication. The reasons are that it is more convenient, that is easy to bring along, ready to be consumed in pill or solution form, and shows fast results. Herbal medicine became less popular.

In the end of the last century, herbal and traditional medication showed a revival. With the increment in education and socioeconomic status, people are more health conscious now. They take herbals as supplements. Modern medicines come with many side effects. For example, Vioxx may cause heart attack (Dogne *et al.*, 2006), Viagra which is intended for impotence may cause heart attack (Czap, 2005), and recently the Tamiflu that intended to fight H5N1 bird flu virus has caused death in Japan (Fuyuno, 2007).

It has been estimated that 80% of the world's rural population is still dependent on herbal medicine for primary health care (Sasson, 1996; Natesh, 2000). The use of herbal medicines is growing rapidly at a rate of 10-20% annually (Philipson, 1995). The global market value for herbal medicine was estimated to be worth USD 800 billion a year (Rajasekharam and Ganeshan, 2002) and is still increasing. In Malaysia, the sale of herbal products is valued at RM 2 billion in 2000, RM 2.35 billion in 2004, RM 3.13 billion in 2005 (Rohana, 2004) and RM 5.2 billion in 2010. As such, it can be seen that the use of herbal medicine is generally on the increasing trend now.

