

UNIVERSITI PUTRA MALAYSIA

PREPARATION AND CHARACTERIZATION OF POLYPROPYLENE-NATURAL RUBBER /CLAY NANOCOMPOSITES

GOH WEI CHEE

FS 2007 33

PREPARATION AND CHARACTERIZATION OF POLYPROPYLENE-NATURAL RUBBER /CLAY NANOCOMPOSITES

By

GOH WEI CHEE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, In Fulfilment of the Requirements for the Degree of Master of Science

December 2006

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PREPARATION AND CHARACTERIZATION OF POLYPROPYLENE-NATURAL RUBBER/CLAY NANOCOMPOSITES

By

GOH WEI CHEE

December 2006

Chairman: Professor Wan Md. Zin bin Wan Yunus, Ph.D.

Faculty: Science

In this study, octadecylamine (ODA-MMT) and dodecylamine (DDA-MMT) modified natrium-montmorillonites (Na-MMTs) were used to prepare polypropylene-natural rubber /clay nanocomposites. The products were characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Energy Filtering Transmission Electron Microscopy (EFTEM), Thermogravimetric Analyser (TGA) and tensile measurement. To prepare the nanocomposites, the ODA-MMT and DDA-MMT were blend with polypropylene and natural rubber in the ratio of 70: 30, by using an internal mixer. The study of blending speed, temperature and period shows that under the following blending conditions: 80 r.p.m. of rotor speed, temperature of 180°C and 6 minutes of blending period, the hybrid produced with maximum tensile strength and elongation at break was obtained. The optimum clay content to give maximum tensile strength is 1 php. In order to improve the mechanical properties of the blend, different

amount of N, N'-m- phenylenedimaleimide (HVA-2) was blended with PPNR and their properties were also studied by tensile measurement, TGA and dynamic mechanical analysis (DMA). One php of HVA-2 was taken as the optimum concentration to be incorporated in PPNR because it gave the highest tensile improvement. The tensile properties and thermal degradation behaviour of PPNR/clay crosslinked with HVA-2 were then compared with the properties of PPNR/clay which consists of maleic anhydride grafted polypropylene (MAgPP) as a compatibilizer. HVA-2 crosslinked PPNR/clay shows higher tensile strength and elongation at break improvement compared to that of the MAgPP compatibilized PPNR/clay. However, the TGA thermograms of these two systems are very similar. The PPNR/HVA-2/clay nanocomposites were further modified by changing their clay contents. XRD and TEM analyses show that octadecylamine modified montmorillonite (ODA-MMT) and dodecylamine modified montmorillonite (DDA-MMT) produce a mixture of intercalation and flocculation, and of intercalation and exfoliation in the hybrids, respectively. By incorporating 1 and 2 php of ODAMMT into the HVA-2 crosslinked PPNR, the tensile strength of the hybrid increases about 10%. One php of DDAMMT clay loaded in the blend causes 7% of increment in tensile strength. The thermal degradation of both organoclay loaded blends is almost the same as the sample with the low clay content. Increase the modified clay content to 5 php improves the degradation temperature of 20°C.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENYEDIAAN DAN PENCIRIAN NANOKOMPOSIT POLIPROPILENA-GETAH ASLI/TANAH LIAT

Oleh

GOH WEI CHEE

Disember 2006

Penerusi: Profesor Wan Md. Zin bin Wan Yunus, PhD

Fakulti: Sains

Dalam kajian ini, natrium montmorillonite (NaMMT) yang telah diubahsuai oleh oktadesilammonium (ODA-MMT) dan dodesilammonium (DDA-MMT) telah digunakan untuk menyediakan nanokomposit polipropilena-getah/tanah liat. Pencirian komposit yang dihasilkan dibuat dengan menggunakan kaedah spektroskopi inframerah (FTIR)s, analisis pembelauan sinar-X (XRD), mikroskopi elektron penyebaran (EFTEM), penganalisis termogravimetri (TGA), dan pengukuran tegangan. Untuk menyediakan nanokomposit, tanah liat yang diubahsuai oleh oktadesilammonium dan dodesilammonium diadun dengan polipropilena (PP) dan getah asli (NR) dalam nisbah 70: 30, dengan menggunakan pencampur dalaman. Kajian bagi menentukan jangka masa adunan, kadar adunan dan suhu adunan menunjukkan bahawa pada keadaan adunan berikut: kadar pusingan roda 80 rpm, suhu adunan 80°C dan jangka masa selama 6 minit, adunan yang dihasilkan mempunyai kekuatan tegangan dan pemanjangan pada

takat putus yang maksima. Kandungan tanah liat yang optimum untuk adunan mencapai kekuatan tengangan maksima ialah 1 php. Untuk mempertingkatkan sifat mekanik adunan, kandungan N, N'-m- fenilindimaleimide (HVA-2) yang berbeza telah ditambah ke dalam PPNR dan sifat-sifat adunan dikaji dengan pengukuran tegangan, TGA dan analisis mekanika dinamik (DMA). Satu php HVA-2 telah diambil sebagai kandungan optimum untuk dicampurkan ke dalam PPNR kerana ia memberi peningkatan tengangan yang tertinggi. Sifat tegangan dan perosotan terma bagi adunan PPNR/tanah liat yang disambung silang dengan HVA-2 kemudian dibandingkan dengan sifat-sifat adunan PPNR/tanah liat yang mengandungi polipropilena dicangkukkan malik anhidrida (MAgPP) sebagai agen penserasi. Adunan PPNR/tanah liat yang disambung silang dengan HVA-2 menunjukkan peningkatan kekuatan tegangan dan pemanjangan pada takat putus yang tinggi jika dibanding dengan PPNR/tanah liat yang diserasi oleh MAgPP. Akan tetapi, termogram TGA bagi kedua-dua sistem lebih kurang sama. Kajian bagi PPNR/HVA-2/tanah liat nanokomposit dilanjutkan dengan mencampurkan kandungan tanah liat yang berlainan di dalam adunan. Analisis XRD dan TEM menunjukkan bahawa ODA-MMT dan DDA-MMT masing-masing menghasilkan adunan jenis interkalasi dan pengumpalan serta interkalasi dan kelupas. Dengan mencampurkan 1 dan 2 php ODA-MMT ke dalam adunan PPNR/tanah liat yang disambung silang oleh HVA-2, kekuatan tegangan bagi adunan tersebut diperhatikan meningkat lebih kurang 10%. Pencampuran 1 php DDA-MMT dalam adunan menyebabkan peningkatan kekuatan tegangan sebanyak 7%. Perosotan terma bagi adunan yang mengandungi kedua-dua jenis tanah liat terubah adalah lebih kurang sama pada kandungan tanah liat yang rendah. Peningkatan kandungan tanah liat terubah kepada 5 php telah menyebabkan peningkatan perosotan terma sebanyak 20°C.

ACKNOWLEDGEMENTS

I would like to dedicate this project to all the individuals who had directly or indirectly contributed to this research. First of all is the chairman of my Supervisory Committee, Professor Dr. Wan Md Zin bin Wan Yunus, for his untiring guidance, constructive comments, advices and continuous support throughout the duration of this study. Not forgetting my co-supervisors, Associate Professor Dr. Mansor bin Ahmad and Associate Professor Dr. Mohamad Zaki bin Ab. Rahman, for their supervision and support.

I wish to extend my appreciation to all the staffs in Electron Microscopy Unit, Institute Biosains, UPM, especially Cik Azilah and Mr. Ho and Malaysia Rubber Research Institute, especially Mr. Rahman and Mr. Abdlah, for their assistance and sharing of experience. Sincere thanks are also extended to all the Laboratory Assistants in the Chemistry Department, Science Faculty, UPM, for their dedication in providing technical assistance and contribution. My gratitude also goes to all my seniors and lab-mates in Lab 407, for their support, understanding and cooperation throughout this research.

Last but not least, I wish to express my deepest gratitude to my beloved parents and siblings for their understanding, moral and financial support throughout the period of my study.

I certify that an Examination Committee has met on 11 June 2007 to conduct the final examination of Goh Wei Chee on her Master of Science thesis entitled "Preparation and Characterization of Polypropylene-Natural Rubber /Clay Nanocomposites" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Sidik Silong, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mohd Zobir Hussein, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Anuar Kassim, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Jamail Ismail, PhD

Professor School of Chemical Sciences Universiti Sains Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Wan Md. Zin B. Wan Yunus, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Mansor B. Ahmad, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

Mohamad Zaki B. Ab. Rahman, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

> AINI IDERIS, PhD Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

GOH WEI CHEE

Date:

TABLE OF CONTENTS

30

31

ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LISTS OF SCHEMES	xix
LISTS OF ABBREVIATIONS	XX

CHAPTER

I.	INTRODUCTION	1

LITERATURE REVIEW	
Polymer Blend	3
Thermoplastic Elastomer	6
Polypropylene/Natural Rubber Blend	9
Montmorillonite	16
Polymer Layered Silicate Nanocomposites	20
Polypropylene/Clay Nanocomposites	23
Rubber/Clay Nanocomposites	27
Polypropylene-elastomer/clay Nanocomposites	29

OBJECTIVES

II. METHODOLOGY

Materials	32
Methods	
Preparation of Organoclay	32
Preparation of PPNR and PPNR/organoclay Nanocomposites	33
Characterizations	
Fourier Transform Infrared Analysis (FTIR)	35
Elemental Analysis	35
X-Ray Diffraction (XRD) Analysis	35
Thermogravimetric Analysis (TGA)	36
Energy Filtering Transmission Electron Microscopy (EFTEM)	36
Dynamic Mechanical Analysis (DMA)	36
Tensile Measurement	37

RESULTS AND DISCUSSION III.

Characterization of Organoclay	38
Fourier Transform Infrared (FTIR) Analysis	40
X-Ray Diffraction (XRD) Analysis	43
Elemental Analysis	45
Thermogravimetry Analysis (TGA)	47
Preparation and Characterization of PPNR/Clay Nanocomposites	
Study of Blending Conditions	53
Comparison of Tensile Properties	58
Effect of Organoclay Content in PPNR Blend Composites	
XRD Analysis	61
Tensile Properties	64
Comparison of Crosslinking and Compatibilizing Effect	67
Effect of Amount of HVA-2 on Tensile Properties of PPNR	68
Effect of Amount of HVA-2 on Thermal Properties of PPNR	
Thermogravimetric Analysis	70
Dynamic Mechanical Analysis	74
Comparison of Mechanical and Thermal Properties of	
PPNR/HVA-2/Clay and PPNR/MAgPP/Clay	
XRD Analysis	80
Tensile Properties	83
Thermogravimetric Analysis	86
Analysis of Clay Dispersion in PPNR/HVA-2/Clay	
Nanocomposites	94
Effect of Clay Content on Tensile Properties of	
PPNR/HVA-2/Clay Nanocomposites	102
Effect of Clay Content on Thermal Degradation of	
PPNR/HVA-2/Clay Nanocomposites	105
IV. CONCLUSIONS	109
REFERENCES	112
APPENDICES	118
BIODATA OF THE AUTHOR	

LIST OF TABLES

Table		Page
1	Comparison of highly filled and lightly filled PPNR (Elliott, 1981).	11
2	Typical mixing cycle for partially crosslinked PPNR in a BR Banbury with a rotor speed of 116r.p.m. (Elliot, 1990).	12
3	Blending sequence in preparing PPNR/clay nanocomposites.	33
4	Blending sequence in preparing PPNR/HVA-2/clay nanocomposites	34
5	Blending sequence in preparing PPNR/MAgPP/clay nanocomposites	34
6	The basal spacing (d_{001}) and interlayer spacing $(d_{001} - 9.6\text{\AA})$ for Na-MMT, DDA-MMT and ODA-MMT	45
7	(a), (b) and (c) Amounts of C, H and N contain in Na-MMT, DDA-MMT and ODA-MMT respectively	46
8	Amount of surfactants intercalated in the clay layers	47
9	Effect of HVA-2 and MAgPP on thermal degradation for PPNR/clay nanocomposites.	93
10	Effect of clay content on thermal degradation for PPNR/HVA2/Na-MMT microcomposites, PPNR/HVA2/DDAMMT and PPNR/HVA2/ODAMMT nanocomposites.	108

LIST OF FIGURES

Figure		Page
1	Phase morphology of a polymer blend. (a) and (c) show different types of minority polymer distributed in majority polymer. (b) shows a co-continuous phase.	5
2	Morphology of thermoplastic elastomer (a) hard polymer/elastomer combinations, (b) dynamic vulcanizates.	7
3	Stiffness of typical thermoplastic elastomers at various temperatures (Geoffrey, 1996).	8
4	Comparison of Izod impact strength for three different types of blend (Tinker, 1987).	10
5	Molecular formula of HVA-2	15
6	Structure of 2:1 phyllosilicates	17
7	The arrangement of alkyl chain in between the silicate layers: (a) mono layer and (b) bilayer which are parallel to the silicate layer and (c) mono layer and (d) bilayer which in paraffin arrangements (LeBaron <i>et al.</i> , 1999).	19
8	Different types of composites: (a) conventional composite, (b) intercalated nanocomposites, (c) flocculated nanocomposites and (d) exfoliated nanocomposites.	21
9	Proposed model for the torturous zigzag diffusion path in an exfoliated polymer-clay nanocomposite when used as a gas barrier (Yano <i>et al.</i> , 1997)	22
10	Chemical structure of maleic anhydride grafted PP (MAgPP).	24

11	Crosslinking of ethylene-propylene-diene (EPDM) – clay hybrids (Usuki et al., 2002)	28
12	Dumb-bell specimen for tensile measurement	37
13	FTIR spectra of (a) Na-MMT, (b) ODA-MMT and (c) ODA surfactant.	41
14	FTIR spectra of (a) dodecylamine surfactant, (b) DDA-MMT, (c) Na-MMT	42
15	XRD patterns of (a) Na-MMT, (b) DDA-MMT and (c) ODA-MMT	43
16	TGA thermograms of Na-MMT, DDA-MMT and ODA-MMT	49
17	DTG thermograms of ODA-MMT, DDA-MMT and Na-MMT	50
18	TGA thermograms of octadecylamine and dodecylamine	51
19	DTG thermograms of octadecylamine and dodecylamine	52
20	Effect of blending period on XRD patterns of PPNR/clay nanocomposites	54
21	Effect of blending period on d-spacing of DDA-MMT in PPNR/clay	54
22	Effect of blending rotor speeds on XRD patterns of PPNR/clay nanocomposites	55
23	Effect of blending rotor speed on d-spacing of DDA-MMT in PPNR/clay	56

24	Effect of blending temperatures on XRD patterns of PPNR/clay nanocomposites	57
25	Effect of blending temperature on d-spacing of DDA-MMT in PPNR/clay	57
26	Effect of various blending period on tensile strength and elongation at break of PPNR/clay nanocomposites	59
27	Effect of various blending rotor speed on tensile strength and elongation at break of PPNR/clay nanocomposites	60
28	Effect of various blending temperatures on tensile strength and elongation at break of PPNR/clay nanocomposites	60
29	XRD patterns of PPNR/MMT composites with 1, 2, 3 and 5 php of clay loading	62
30	XRD patterns of PPNR/DDAMMT composites with 1, 2, 3 and 5 php of clay loading	63
31	XRD patterns of PPNR/ODAMMT composites with 1, 2, 3 and 5 php of clay loading	63
32	Effect of different organoclays in various clay content on tensile strength of PPNR/clay composites	66
33	Effect of different organoclays in various clay content on elongation at break of PPNR/clay composites	66
34	Effect of different amount of HVA-2 on the tensile strength of PPNR	69
35	Effect of different amount of HVA-2 on elongation at break of PPNR	69

36	Mechanism of degradation of PP proposed by George et al, 1999	71
----	---	----

- 37 TGA thermograms of (a) NR (b) PP, (c) PPNR/0.5%HVA-2, (d)
 72 PPNR/0.75%HVA-2, (e) PPNR,, (f) PPNR/1.0%HVA-2 and (g)
 PPNR/1.5%HVA-2
- 38 DTG thermograms of (a) NR (b) PP, (c) PPNR/0.5%HVA-2, (d) 73
 PPNR/0.75%HVA-2, (e) PPNR,, (f) PPNR/1.0%HVA-2 and (g)
 PPNR/1.5%HVA-2
- 39 Dynamic mechanical spectra of damping $(\tan \delta)$ as a function of 77 temperature for PPNR and 0.5%, 0.75%, 1.0% and 1.5% HVA-2 crosslinked PPNR
- 40 Storage modulus of (a) PPNR, (b) PPNR/0.5% HVA-2, (c) 78 PPNR/0.75%HVA-2, (d) PPNR/1.0%HVA-2 and (e) PPNR/1.5%HVA-2
- 41 Loss modulus of PPNR and PPNR/HVA-2 in 5%, 0.75%, 1.0% 79 and 1.5% of HVA-2
- 42 XRD patterns of (a) PPNR/MAgPP, (b) 81 PPNR/MAgPP/DDA-MMT, (c) PPNR/DDA-MMT and (d) PPNR/HVA2/DDA-MMT
- 43 XRD patterns of (a) PPNR/MAgPP, (b) 82 PPNR/MAgPP/ODA-MMT, (c) PPNR/ODA-MMT and (d) PPNR/HVA2/ODA-MMT
- 44 XRD patterns of (a) PPNR/MAgPP, (b) PPNR/MAgPP/Na-MMT, 82 (c) PPNR/Na-MMT and (d) PPNR/HVA2/Na-MMT
- 45 Comparison of tensile strength of 1php of different clay reinforced 85 in different matrices

- 46 Comparison of elongation at break of 1php of different clay 85 reinforced in different matrix
- 47 TGA thermogram of (a) PPNR, (b) PPNR/MAgPP, (c) 87 PPNR/1.0%HVA2, (d) PPNR/HVA2/Na-MMT and (e) PPNR/MAgPP/Na-MMT
- 48 DTG thermogram of (a) PPNR, (b) PPNR/MAgPP, (c) 88 PPNR/1.0%HVA2, (d) PPNR/HVA2/Na-MMT and (e) PPNR/MAgPP/Na-MMT
- 49 TGA thermograms of (a) PPNR, (b) PPNR/MAgPP, (c) 89 PPNR/1.0%HVA2, (d) PPNR/HVA2/DDA-MMT and (e) PPNR/MAgPP/DDA-MMT
- 50 DTG thermograms of (a) PPNR, (b) PPNR/MAgPP, (c) 90 PPNR/1.0%HVA2, (d) PPNR/HVA2/DDA-MMT and (e) PPNR/MAgPP/DDA-MMT
- 51 TGA thermograms of (a) PPNR, (b) PPNR/MAgPP, (c) 91 PPNR/1.0%HVA2, (d) PPNR/HVA2/ODA-MMT and (e) PPNR/MAgPP/ODA-MMT
- 52 DTG thermograms of (a) PPNR, (b) PPNR/MAgPP, (c) 92 PPNR/1.0%HVA2, (d) PPNR/HVA2/ODA-MMT and (e) PPNR/MAgPP/ODA-MMT
- 53 XRD patterns of PPNR/HVA-2/Na-MMT at different clay content: 95 (a) 1 php, (b) 2 php, (c) 3 php and (d) 5 php
- 54 XRD patterns of PPNR/HVA-2/DDAMMT in (a) 1php, (b) 2 php, 97 (c) 3 php and (d) 5 php
- 55 TEM micrograph taken at low magnification from PPNR with the 97 blending ratio PP:NR=70:30

- 56 TEM micrograph taken at low magnification from 98 PPNR/HVA-2/DDAMMT with 1 php clay content
- 57 TEM micrograph taken at high magnification from 98 PPNR/HVA-2/DDAMMT with 1 php clay content
- 58 XRD patterns of PPNR/HVA-2/ODAMMT in (a) 1php, (b) 2 php, 100 (c) 3 php and (d) 5 php
- 59 TEM micrograph taken at low magnification from 101 PPNR/HVA-2/ODAMMT with 1 php clay content
- 60 TEM micrograph taken at high magnification from 101 PPNR/HVA-2/ODAMMT with 1 php clay content
- 61 Effect of different organoclays with various clay contents on 104 tensile strength of PPNR/HVA-2/clay composites
- 62 Effect of different organoclays with various clay contents on 104 elongation at break of PPNR/clay composites
- 63 TGA thermograms of PPNR, PPNR/HVA-2, 106 PPNR/HVA-2/1%DDAMMT, PPNR/HVA-2/1%ODAMMT and PPNR/HVA-2/1%NaMMT
- 64 DTG thermograms of PPNR, PPNR/HVA-2, 107 PPNR/HVA-2/1%DDAMMT, PPNR/HVA-2/1%ODAMMT and PPNR/HVA-2/1%NaMMT

LIST OF SCHEMES

Scheme		Page
1	Ionization of dodecylamine	39
2	Formation of dodecylamine modified montmorillonite	39
3	Ionization of octadecylamine	39
4	Formation of octadecylamine modified montmorillonite	39

LIST OF ABBREVIATIONS

CEC	Cation exchange capacity
DDA	Dodecylamine
DDA-MMT	Dodecylamine modified montmorillonite
DMA	Dynamic mechanical analysis
DTG	Derivative thermal gravimetry
EPDM	Ethylene-propylenediene rubber
EPM	Ethylene-propylene rubber
FTIR	Fourier transform infrared
HVA-2	N, N'-m-phenylenedimaleimide (HVA-2)
LLDPE	Low density polyethylene
MAgPP	Maleic anhydride grafted polypropylene
Na-MMT	Sodium montmorillonite
NBR	Nitrile rubber
NR	Natural rubber
ODA	Octadecylamine
ODA-MMT	Octadecylamine modified montmorillonite
php	Part per hundred polymer
PP	Polypropylene
PPNR	Polypropylene-natural rubber
SBS	styrene-butadiene-styrene
SIS	styrene-isoprene-styrene

SMR CV	Standard Malaysian Rubber constant viscosity
TEM	Transmission electron microscopy
Tg	Glass transition temperature
TGA	Thermogravimetic analysis
T _{max}	Temperature at maximum decomposition
TPE	Thermoplastic elastomer
ТРО	Thermoplastic olefin
TPV	Thermoplastic vulcanizate
XRD	X-ray diffraction

CHAPTER I

INTRODUCTION

Polymer blend is a kind of material which consists of two or more polymers or copolymers. The blending of different types of polymers is aim to get a material with the properties in between the different types of polymers. Commercial polyblends are of commonly three (i) elastomer-elastomer blends, (ii) types: thermoplastic-thermoplastic blends and (iii) thermoplastic-elastomer blends (Ghosh, 2002). Among them, thermoplastic elastomer or rubber modified thermoplastic (depends on the composition of the blend) had gained much industrial interest. The blending of plastic and rubber offer the advantages of elastomer behaviour at room temperature and thermoplastic behaviour at processing temperature (Kuriakose et al. 1984; Montoya et al. 2004). They bridge the gap between rubber and plastic in both processing and final properties. During the period from 1960 to 1975, a large number of patents on elastomer-thermoplastics blends, especially those on ethylene-propylene rubber (EPM), ethylene-propylenediene rubber (EPDM) and polypropylene (PP) were issued (Fisher, 1972; Fritz and Shih, 1973; Bodungen and Meredith, 1974).

The automotive industry is increasingly using flexible plastics for soft front and rear ends, side protection strips, bumpers and interior trim. These components are designed to be several orders of magnitude more flexible than steel, yet stiff enough for components to support their own weight. Hence dimensional stability at elevated temperatures is required, which includes the effect or exposure to sunlight and, in the

case of painted parts, to a baking temperature of at least 120°C (Elliot, 1990).

In order to improve the toughness and stiffness of the materials, to enhance their barrier properties, to enhance their resistance to fire, or simply to reduce cost, manufacturers fill polymers with particles. However, due to the size of the fillers, large loading are required to significantly increase stiffness, which can result in poor processability, lower ductility, and a rough surface finish. By replacing such fillers with layered silicates could potentially alleviate these weaknesses (Lee *et al.*, 2005).

Montmorillponite is one of the common natural clay from smectite family. The silicate layer consists of two fused silica tetrahedral sheets sandwiching an edge-shared octahedral sheet of either aluminium or magnesium hydroxide. Ca⁺ and Na⁺ situated between the layers to counterbalance the negative charges. Due to the high hydrophilicity of the clay, water molecules are usually present between the layers, causing low surface activity in between the clay and matrice. Therefore the clay particles could only be dispersed on the microscale in the polymer matrice and thus give the properties of conventional composites (Kornmann, 1999).

Ion-exchange process is well established in exchanging the hydrophilic clay into organophilic. Interlayer cations can be exchanged with alkyl ammonium or alkylphosphonium in order to give a polar surface. Polymers were found easier to penetrate such modified clay. The insertion of polymer matrice into the nanometer scale silicate layer further increase the gap between the silicate layers and forms an intercalated nanocomposite (Ray and Okamoto, 2003). Depending on the ratio and

nature of the components and also the method using, delamination of silicate layers can occur and exfoliate polymer-clay nanocomposite can be obtained. Without the registry between the silicate layers, exfoliate polymer-clay nanocomposites were reported had gained significant improvement in stiffness, strength, heat resistance and barrier properties if compared with its unfilled counterpart.

A number of investigations on rubber-clay nanocomposites (Usuki 2002; Arroyo *et al.*, 2003; Zheng *et al.*, 2004) as well as polypropylene-clay nanocomposites (Liu and Wu 2001; Nam. *et al.*, 2001; Garcia-Lopez. *et al.*, 2003; Xu. *et al.*, 2002; Zheng. *et al.*, 2004; Morgan and Harris 2003; Tang *et al.*, 2003; Nowacki. *et al.*, 2004; Wang. *et al.*, 2004; Zhang. *et al.*, 2004) have been carried out. However, only a few researches were published on the polypropylene-elastomer-clay blend nanocomposites (Mishra *et al.*, 2004; Lee *et al.*, 2005; Lee *et al.*, 2006; Thompson and Yeung, 2006). Apparently, no research was published on polypropylene-natural rubber-clay blend nanocomposites.

LITERATURE REVIEW

Polymer blends

Polymer blends are available either in homogeneous or heterogeneous (Ghosh, 2002). In other words, they can be classified as miscible, partially or nearly miscible or immiscible blend. Miscible blends refer to those blends that are homogenous at a molecular level while those blends that are homogenous at some temperatures and

