

UNIVERSITI PUTRA MALAYSIA

ADSORPTION AND PHOTOCATALYTIC PROPERTIES OF IMMOBILISED TITANIUM DIOXIDE-LOADED ACTIVATED CARBON FOR DYE REMOVAL

CHANG SOOK KENG

FS 2007 28

ADSORPTION AND PHOTOCATALYTIC PROPERTIES OF IMMOBILISED TITANIUM DIOXIDE-LOADED ACTIVATED CARBON FOR DYE REMOVAL

By

CHANG SOOK KENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Science

May 2007

Dedicated with much love and affection to my parents, with deep gratitude for all their loving help, to my family, who, by their love and faith in me, have always been a source of great encouragement to me.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ADSORPTION AND PHOTOCATALYTIC PROPERTIES OF IMMOBILISED TITANIUM DIOXIDE-LOADED ACTIVATED CARBON FOR DYE REMOVAL

By

CHANG SOOK KENG

May 2007

Chairman: Professor Zulkarnain Zainal, PhD

Faculty: Science

With the development of industries and mushrooming of factories venturing into textiles, dyes, pigments, paints and so on, the condition and safety level of water bodies have worsened. Channeling these pollutants into the rivers may lead to unwanted and unsolved environmental problems. Therefore, various methods have been developed to overcome this escalating problem. Activated carbon adsorption is known as a remarkable process due to its large adsorption capacity without forming harmful intermediates or substances while photocatalytic degradation by TiO₂ is a powerful process as it is capable of removing a wide range of organic compounds and achieving a complete mineralization of organics at the end of the process. Combining these two techniques will lead to the enhancement of the removal system.

In this study, adsorption and photocatalytic degradation processes of Methylene Blue were conducted using immobilised mixture of titanium dioxide/activated carbon (TiO_2/AC) under the illumination of ultraviolet (UV) lamp. Immobilised TiO₂/AC was

prepared by applying TiO₂/AC onto a thin layer of PVA/formaldehyde binder that has been spread on glass. The physico-chemical properties of TiO₂/AC were studied by Particle Size Analysis (PSA), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Accelerated Surface Area and Porosimetry Analysis (ASAP) and Infrared Analysis (IR). The removal process was studied by varying several parameters such as ball milling of AC in TiO₂/AC, ratio of TiO₂ and AC, suspension loading in the preparation of immobilised TiO₂/AC, initial dye concentration, temperature and light source. The effects of UV light and supply of air towards the removal of cationic dyes: Methylene Blue (MB) and Victoria Blue R (VBR) and anionic dyes: Indigo Carmine (IC) and Naphthol Blue Black (NBB) using immobilised TiO₂, AC and TiO₂/AC were studied in terms of first-order and intraparticle diffusion models. Besides that, isotherm studies were done to determine the adsorption capacity of AC and TiO₂/AC by testing 1000 ppm Methylene Blue using immobilised AC and TiO₂/AC that varies in the number of glasses applied (1-5 glasses).

Immobilised TiO₂/AC showed its best performance under UV illumination with the usage of 1.5 g 30% TiO₂/70% AC. Increasing the dye concentration leads to lower rate constant as the workload of the removal system has increased. The removal of Methylene Blue was an exothermic process. Besides that, immobilised samples containing AC was suitable for the removal of cationic dyes while anionic dyes were better removed by immobilised samples containing TiO₂. The highest rate constants were obtained for these dyes under the illumination of UV light and air supply. The data also fitted well in intraparticle diffusion model. The adsorption capacity of AC and

iv

 TiO_2/AC was 370.37 mg/g and 344.83 mg/g respectively. The Langmuir equation gave a better fit to the adsorption isotherm than the Freundlich equation.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

SIFAT PENJERAPAN DAN FOTOPEMANGKINAN KARBON TERAKTIF TERMUAT-TITANIUM DIOKSIDA YANG DISEKAT GERAK UNTUK PENYINGKIRAN PEWARNA

Oleh

CHANG SOOK KENG

Mei 2007

Pengerusi: Profesor Zulkarnain Zainal, PhD

Fakulti: Sains

Pembangunan sektor industri dan pertambahan dalam pembinaan kilang dalam bidang tekstil, pewarna, cat dan sebagainya telah mengakibatkan kemerosotan keadaan dan tahap keselamatan sumber air. Pengaliran bahan pencemar ini ke dalam sungai telah menyebabkan wujudnya masalah-masalah pencemaran alam yang sukar untuk diselesaikan. Dengan ini, pelbagai cara telah dilaksanakan untuk menangani masalah yang semakin ketara ini. Penjerapan karbon teraktif merupakan suatu cara yang baik disebabkan kapasiti penjerapannya yang tinggi tanpa kewujudan bahan perantara atau produk yang bahaya. Proses fotodegradasi dengan titanium dioksida merupakan suatu proses yang berkesan kerana ia dapat menyingkirkan banyak bahan organik dan menukarkan bahan-bahan ini ke bentuk yang tidak bahaya pada akhir proses. Penggabungan dua teknik ini akan meningkatkan kecekapan system penyingkiran.

Dalam kajian ini, proses penjerapan dan fotopemangkinan *Methylene Blue* telah dijalankan dengan menggunakan titanium dioksida/karbon teraktif (TiO₂/AC) tersekat

gerak di bawah penyinaran lampu ultralembayung (UV). TiO₂/AC tersekat gerak disediakan dengan memegunkan TiO₂/AC pada lapisan nipis PVA/formaldehid yang disapukan pada kepingan kaca. Sifat-sifat fizik dan kimia TiO₂/AC dikaji melalui Analisis Saiz Zarah (PSA), Mikroskopi Pengimbasan Elektron (SEM), Pembelauan Sinar-X (XRD), Termogravimetrik (TGA), Luas Permukaan dan Keliangan (ASAP) dan Inframerah (IR). Proses penyingkiran dikaji dengan perubahan beberapa parameter seperti pengisaran bebola pada AC, nisbah TiO_2 dan AC, amaun ampaian dalam penyediaan TiO_2/AC tersekat gerak, kepekatan awal pewarna, suhu dan sumber cahaya. Kesan UV dan bekalan udara terhadap penyingkiran pewarna kationik: Methylene Blue (MB) dan Victoria Blue R (VBR) dan pewarna anionik: Indigo Carmine (IC) dan Naphthol Blue Black (NBB) dengan menggunakan TiO₂, AC and TiO₂/AC tersekat gerak dikaji dari segi tertib kinetik pertama dan model penyebaran intrapartikel. Selain itu, kajian isoterma juga dilakukan untuk menentukan kapasiti penjerapan AC dan TiO₂/AC terhadap *Methylene Blue* pada kepekatan 1000 ppm dengan menggunakan bilangan AC dan TiO₂/AC tersekat gerak yang berlainan (1-5 kepingan kaca).

TiO₂/AC tersekat gerak mempamerkan keputusan terbaik dengan penggunaan 1.5 g 30% TiO₂/70% AC di bawah sinaran UV. Pertambahan kepekatan pewarna mengakibatkan penurunan dalam pemalar kadar kerana sistem penyingkiran perlu bekerja dengan lebih kuat. Penyingkiran *Methylene Blue* merupakan proses eksotermik. Selain itu, sampel tersekat gerak yang mengandungi AC adalah lebih sesuai untuk penyingkiran pewarna kationik manakala pewarna anionik lebih sesuai disingkirkan dengan sampel tersekat gerak yang mengandungi TiO₂. Pemalar kadar tertinggi

vii

ditunjukkan oleh pewarna-pewarna ini di bawah penyinaran lampu UV dan bekalan udara. Data juga mematuhi model penyebaran intrapartikel. Muatan penjerapan AC dan TiO₂/AC adalah sebanyak 370.37 mg/g dan 344.83 mg/g masing-masing. Data penjerapan isoterma lebih mematuhi persamaan Langmuir daripada persaman Freundlich.

ACKNOWLEDGEMENTS

I wish to acknowledge with thanks the significant contributions of my project supervisor, Professor Dr. Zulkarnain Zainal who has given me his informative explanations regarding this project. I owe a considerable debt to his patience, wisdom, understanding, invaluable guidance and continuous supervision. I am greatly indebted to my co-supervisor, Associate Professor Dr. Abdul Halim Abdullah, whose intellectual and guidance ensured my continuing enthusiasm for my studies.

The help from Associate Professor Dr. Fauziah Othman and staffs from Microscopy and Microanalysis Unit, Enzyme and Microbe Technology Laboratory, Bioscience Institute, Universiti Putra Malaysia are very much appreciated in ensuring SEM analysis conducted on my samples. Not forgetting Department of Chemistry, Universiti Putra Malaysia for the provision of laboratory facilities.

Once again, I have benefited immeasurably from my association with superb individuals, who have assisted me in performing many tasks in the production of this project. Unfortunately, there are just too many to name individually and I would hesitate to do so in any event in the fear of inadvertently omitting someone. Sincere appreciation and special thanks attributed to my labmates for their helpfulness, willingness and kindness in guiding and helping out throughout the whole duration of my project.

ix

I have pleasure in expressing my cordial thanks to my family members and all my friends for their endless support, full strength encouragement and concern towards the completion of this project. They have my profound thanks and gratitude.

Finally, I would like to express my heartfelt thanks for financial support from IRPA funding.

I certify that an Examination Committee has met on 21st May 2007 to conduct the final examination of Chang Sook Keng on her Master of Science thesis entitled "Adsorption and Photocatalytic Properties of Immobilised Titanium Dioxide-Loaded Activated Carbon for Dye Removal" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Anuar Kassim, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Zaizi Desa, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Irmawati Ramli, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Musa Ahmad, PhD

Professor Faculty of Graduate Studies Universiti Kebangsaan Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21st JUNE 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Zulkarnain Zainal, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Abdul Halim Abdullah, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17th JULY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

CHANG SOOK KENG

Date: 18th JUNE 2007

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	xi
DECLARATION	xiii
LIST OF TABLES	xviii
LIST OF FIGURES	XX
LIST OF ABBREVIATIONS	xxvii

CHAPTER

INT	RODUCTION	1
1.1	What is Semiconductor?	4
1.2	Theory of Semiconductors	4
1.3	Properties of Titanium Dioxide	7
1.4	Production of Titanium Dioxide	12
1.5	Applications of Titanium Dioxide	14
1.6	What is Photocatalysis?	15
1.7	-	16
1.8	Light Absorption	18
1.9	Photodegradation Process on	
Semi	iconductor	19
1.10	Supports in Photocatalyis	22
	Activated Carbon	27
1.12	Raw Materials Used in the Production of	
Activ	vated	28
	Carbon	
1.13	Manufacture of Activated Carbon	29
	1.13.1 Carbonization Process	29
	1.13.2 Activation Process	30
1.14	Uses of Activated Carbon	32
1.15	Structure and Chemical Nature of the	
Surfa	ace of	33
	Activated Carbon	
	1.15.1 Molecular, Crystalline and	
Poro	us Structure of	33
	Activated Carbon	
	1.15.2 Surface Functional Groups of	37

Activated Carbon

2

3

11000		
1.16	Classification of Pore Sizes	39
1.17	Adsorption Process	40
1.18	1	
in A	ctivated	41
	Carbon	
1.19	Properties of Dyes	43
	1.19.1 Methylene Blue	45
	1.19.2 Victoria Blue R	46
	1.19.3 Indigo Carmine	46
	1.19.4 Naphthol Blue Black	47
1.20	Kinetic Models	52
	1.20.1 First-order rate law	52
	1.20.2 Pseudo-second-order rate law	53
1.21	Intraparticle Diffusion	54
	Adsorption Isotherms	55
	1.22.1 Langmuir Isotherm	55
	1.22.2 Freundlich Isotherm	56
1.23	Objectives	57
LIT	ERATURE REVIEW	58
	Removal of Organic Pollutants by	
Acti	vated Carbon and	58
	Titanium Dioxide	
2.2	Removal of Various Pollutants by	
	orption Process	61
	Removal of Various Pollutants by	
Phot	codegradation	66
	Process	
MA	TERIALS AND METHODOLOGY	70
3.1	Preparation of Mixture TiO ₂ /AC	70
3.2	Preparation of Immobilised TiO ₂ /AC	70
3.3	Preparation of Dyes Solutions	71
3.4	Determination of Wavelength at	_
Max	imum Absorption	72
Cali	(λ _{max}) and Construction of Standard bration Curve	
		70
3.5	Characterization of TiO ₂ /AC	72

3.5.1Particle Size Analysis of Titanium72

Dioxide	(TiO ₂)	
	and Activated Carbon (AC)	
Powders		
	.2 Scanning Electron Microscopy	77
(SEM) A	.3 X-ray Diffractometry (XRD)	73
Analysis	.5 X-ray Dimactometry (XKD)	73
-	.4 Thermogravimetric (TGA)	10
Analysis		73
3.5	.5 Accelerated Surface Area and	
Porosime	etry (ASAP)	74
	Analysis	
	.6 Fourier Transform-Infrared (FT-	
IR) Anal	5	74
	otocatalytic Degradation Studies	74
	sorption Studies	75
	otocatalytic Degradation and	
1	on Studies of	76
	thylene Blue Using TiO ₂ /AC	
	.1 Effect of Ball Milling of AC in	70
TiO ₂ /AC		76
	.2 Effect of Ratio of TiO_2 and AC	76
	.3 Effect of Suspension Loading in aration of	77
the Flepa		//
2 8	Immobilised TiO ₂ /AC .4 Effect of Initial Dye	
Concenti	5	77
	.5 Effect of Temperature	77
	.6 Effect of Light Sources	77
	noval of Various Dyes Using	//
	ised TiO ₂ , AC	78
	l TiO ₂ /AC	
	sorption Isotherms	78
	IS AND DISCUSSION	80
	ticle Size Analysis of Titanium	0.0
	(TiO_2) and (TiO_2) P_{1}	80
	tivated Carbon (AC) Powders	
4.2 Sur and TiO ₂	face Morphology of Immobilised AC $/AC$	81
	D Characteristics of Immobilised	01
4.3 \overline{A} \overline{A} \overline{A} \overline{A}		83
	D_2/AC	00
IIC		

4

	4.4 Thermogravimetric (TGA) Analysis	85
	4.5 Accelerated Surface Area and	
	Porosimetry (ASAP)	87
	Analysis	
	4.6 Fourier Transform-Infrared (FT-IR)	0.0
	Analysis	90
	4.7 Preliminary Tests	93
	4.8 Effect of Ball Milling of AC in	100
	TiO ₂ /AC	100
	4.9 Effect of Ratio of TiO_2 and AC	112
	4.10 Effect of Suspension Loading in the	
	Preparation of	114
	immobilised TiO ₂ /AC	
	4.11 Effect of Initial Dye Concentrations	118
	4.12 Effect of Temperature	124
	4.13 Effect of Light Sources	131
	4.14 Removal of Various Dyes Using	
	Immobilised TiO ₂ ,	134
	AC and TiO ₂ /AC	
	4.14.1 Removal of Various Dyes by	
	Immobilised TiO ₂	134
	4.14.2 Removal of Various Dyes by	
	Immobilised AC	139
	4.14.3 Removal of Various Dyes by	
	immobilised	143
	TiO ₂ /AC	
	4.14.4 Intraparticle Diffusion Model on	
	Various Dyes	148
	4.14.5 Comparisons between Cationic	
	and Anionic Dyes	150
	4.15 Adsorption Isotherms	151
	4.15.3 AC Adsorption Isotherm	151
	4.15.4 TiO ₂ /AC Adsorption isotherm	153
	CONCLUSION AND	
5	RECOMMENDATIONS	156
	5.1 Conclusion	156
	5.2 Recommendations	159
REFEI	RENCES	162
APPE	NDICES	175
BIODA	ATA OF THE AUTHOR	201

LIST OF TABLES

Table		Page
1.1	Band-gap energies for some common semiconductor materials.	7
1.2	Crystallographic properties of anatase, brookite and rutile.	11
1.3	Raw materials that have been studied for the production of activated carbon.	28
1.4	Classification of pores according to their width.	39
1.5	Properties of Methylene Blue.	48
1.6	Properties of Victoria Blue R.	49
1.7	Properties of Indigo Carmine.	50
1.8	Properties of Naphthol Blue Black.	51
2.1	List of adsorbents from the literature.	65
3.1	Labels of various samples by varying the number of ball milling.	76
3.2	Labels of various samples with different ratios.	76
3.3	Labels of different conditions in the removal of various dyes.	78
4.1	Comparison of experimental and standard d (Å) values of immobilised TiO_2 and TiO_2/AC .	85
4.2	Surface area (Langmuir and BET) and average pore diameter of TiO_2 , AC and TiO_2/AC .	90
4.3	Absorption of bonds in TiO_2 , AC and TiO_2/AC .	91
4.4	Removal of various dyes as a function of irradiation time in the the presence of immobilised TiO_2 , AC and TiO_2/AC run in the dark in 4 hours.	94

4.5	Removal of various dyes as a function of irradiation time in the the presence of immobilised TiO_2 , AC and TiO_2/AC under UV illumination in 4 hours.	95
4.6	Kinetic parameters for the effect of ball milling in the removal of Methylene Blue conducted in the dark.	111
4.7	Kinetic parameters for the effect of ball milling in the removal of Methylene Blue conducted under UV illumination.	111
4.8	Percentage of removal for the effect of ratio in the removal of Methylene Blue conducted in the dark and under UV illumination.	114
4.9	Half-life time for the effect of suspension loading in the preparation of immobilised TiO_2/AC in the removal of Methylene Blue.	117
4.10	Half-life time for the effect of initial dye concentrations in the removal of Methylene Blue.	124
4.11	Half-life time for the effect of temperature in the removal of Methylene Blue.	127
4.12	Thermodynamic parameter (ΔG°) for 10 ppm Methylene Blue removal on immobilised TiO ₂ /AC.	130
4.13	Rate constant and half-life time for the effect of light sources in the removal of Methylene Blue.	133
4.14	Kinetic parameters of intraparticle diffusion for the removal of various dyes at different conditions.	150
4.15	Parameters of Langmuir and Freundlich isotherms plots for the adsorption of Methylene Blue by immobilised AC and TiO ₂ /AC.	155

LIST OF FIGURES

Figure		Page
1.1	The energy gap difference between the conductor, insulator and semiconductor.	6
1.2	The energy diagram for a semiconductor showing the band gap energy.	7
1.3	The crystal structure of anatase TiO ₂ .	9
1.4	The crystal structure of rutile TiO ₂ .	10
1.5	The crystal structure of brookite TiO ₂ .	10
1.6	 Formation of surface hydroxyls (OH) on the anatase TiO₂ surface i) An uncovered surface. ii) Coordination of Ti⁴⁺ ions by water molecules. iii) The formation of surface hydroxyl ions by proton transfer from water to O²⁻ ions. 	12
1.7	Process for the production of fumed titanium dioxide.	14
1.8	Spectrum of electromagnetic radiation.	16
1.9	The excitation process.	18
1.10	Schematic representation of the photochemical activation of a semiconductor and formation of the hydroxyl radical. VB: valence band; CB: conduction band; A: electronic acceptor compound; D: electronic donating compound.	20
1.11	Schematic illustration of several functions assigned to a support in a photocatalytic system.	24
1.12	Conceptual model for photocatalytic reaction in thin-film catalyst: (a) system configuration and (b) coordinate system and concentration profile.	25

1.13	Flowsheet of the production of activated carbon with steam activation.	31
1.14	Order of carbon atoms in a crystal of graphite.	34
1.15	Comparison of three-dimensional crystal lattice of (a) graphite and (b) turbostratic structure.	35
1.16	Schematic illustration of the structure of activated carbon: (a) easily undergoing graphitization and (b) undergoing graphitization to a small degree.	37
1.17	Surface functional groups of activated carbon.	38
1.18	Different regimes of diffusion and flow of adsorbate molecules through a pore.	43
1.19	General structure of cationic dyes.	44
3.1	Coating of TiO_2/AC onto glass slide. The same procedures were carried out to immobilise TiO_2 and AC on glass slide.	71
3.2	Experimental set-up for photodegradation process.	75
4.1	Graph of particle size of original TiO_2 and AC (Blend, Sift, No ball milling) powders.	80
4.2	Scanning electron micrograph of AC: 1000 x magnification.	81
4.3	Scanning electron micrograph of AC: 5000 x magnification.	82
4.4	Scanning electron micrograph of TiO ₂ /AC: 1000 x magnification.	82
4.5	Scanning electron micrograph of TiO ₂ /AC: 5000 x magnification.	83
4.6	XRDs for TiO ₂ , AC and TiO ₂ /AC coated on glass slide.	84
4.7	TGA thermograms of TiO ₂ , AC and TiO ₂ /AC.	86
4.8	Nitrogen desorption/adsorption isotherm for TiO_2 , AC and TiO_2/AC .	88

4.9	Pore size distributions and pore volume obtained from nitrogen desorption isotherms for TiO_2 , AC and TiO_2/AC .	89
4.10 4.11	IR spectra of TiO ₂ . IR spectra of AC.	92 92
4.12	IR spectra of TiO ₂ /AC.	92
4.13	Removal of various dyes as a function of irradiation time in the presence of immobilised TiO ₂ . [Conditions: 5 pieces of glass slides, 200 mL of 20 ppm dye solution and temperature 28 °C].	97
4.14	Removal of various dyes as a function of irradiation time in the presence of immobilised AC. [Conditions: 5 pieces of glass slides, 200 mL of 20 ppm dye solution and temperature 28 °C].	98
4.15	Removal of various dyes as a function of irradiation time in the presence of immobilised TiO ₂ /AC. [Conditions: 5 pieces of glass slides, 200 mL of 20 ppm dye solution and temperature 28 °C].	99
4.16	Removal of Methylene Blue as a function of irradiation time on the effect of ball milling. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution and temperature 28 °C].	101
4.17	Graph of capacity versus time on the removal of Methylene Blue by immobilised TiO ₂ /AC for the effect of ball milling. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, run in the dark and temperature 28 °C].	104
4.18	Graph of first-order kinetics of Methylene Blue onto immobilised TiO ₂ /AC for the effect of ball milling. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, run in the dark and temperature 28 °C].	105

4.19	Graph of pseudo-second-order kinetics of Methylene Blue onto immobilised TiO ₂ /AC for the effect of ball milling. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, run in the dark and temperature 28 °C].	106
4.20	Graph of intraparticle diffusion of Methylene Blue onto immobilised TiO ₂ /AC for the effect of ball milling. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, run in the dark and temperature 28 °C].	107
4.21	Graph of capacity versus time on the removal of Methylene Blue by immobilised TiO ₂ /AC for the effect of ball milling. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	108
4.22	Graph of first-order kinetics of Methylene Blue onto immobilised TiO ₂ /AC for the effect of ball milling under the presence of UV light. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	109
4.23	Graph of intraparticle diffusion of Methylene Blue onto immobilised TiO ₂ /AC for the effect of ball milling under the presence of UV light. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	110
4.24	Graph of rate constant, k_1 of Methylene Blue removal for the effect of ratio. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution and temperature 28 °C].	113
4.25	Graph of capacity versus time on the removal of Methylene Blue	115

	by immobilised TiO ₂ /AC for the effect of suspension loading in the preparation of immobilised TiO ₂ /AC. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	
4.26	Graph of rate constant, k_1 of Methylene Blue removal for the effect of suspension loading in the preparation of immobilised TiO ₂ /AC. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	117
4.27	Removal of Methylene Blue as a function of irradiation time on the effect of initial dye concentrations. [Conditions: 5 pieces of glass slides, 200 mL of Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	120
4.28	Amount of Methylene Blue removed by immobilised TiO ₂ /AC versus initial dye concentrations run in the dark and under UV illumination for 4 hours. [Conditions: 5 pieces of glass slides, 200 mL of Methylene Blue solution and temperature 28 °C].	121
4.29	Graph of capacity versus time on the removal of Methylene Blue by immobilised TiO ₂ /AC for the effect of initial dye concentrations. [Conditions: 5 pieces of glass slides, 200 mL of Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	122
4.30	Graph of rate constant, k_1 of Methylene Blue removal for the effect of initial dye concentrations. [Conditions: 5 pieces of glass slides, 200 mL of Methylene Blue solution, light source (1 ultraviolet lamp) and temperature 28 °C].	123
4.31	Graph of rate constant, k_1 of Methylene Blue removal for the effect of temperature. [Conditions: 5 pieces of glass slides, 200 mL of 10 ppm Methylene Blue solution and light source (1 ultraviolet lamp)].	126

