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In any approximation problem, we concerned with a measure of closeness of 

polynomial ( )xp  to a function  ( )xf . Approximations are often obtained by power 

series expansions in which the higher order terms are dropped. 

 

One of the fundamental idea in the differential calculus is that a function can be 

“locally” approximated by its tangent line. If f be a function defined on an open 

interval I and let  and Ic∈ Nn∈ . Suppose that the function has n-th derivative at 

all . Then,  the polynomial Ix∈ ( )( )ccfTn ,  is called as Taylor polynomial of order n 

of function at the point c. If the function is infinitely differentiable on I, so the series 

is called Taylor Series of f at point c. Taylor Series is one of the fundamental idea in 

differential calculus. However, Taylor Series only can apply if and only if the 

function f  be  differentiated on its interval stated.  

 

A differentiable function is a continuous function. But, this is not always true that a 

continuous function is a differentiable function. Weierstass Approximation Theorem 
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states that every continuous function defined on an interval [ ]ba, can be uniformly 

approximated as closely as the decided function. Thus, this theorem ensure that every 

function can be approximate by a polynomial.  

 

Consequently, in the research, we develop a new approximation method to 

approximate the non differentiable function which has singularity at one point, two 

points and three points by using Fourier series, Lagrange Interpolation and 

convolution method. We will also discover the asymptotic of Lagrange Interpolation 

for function where λ
λ ||)( ttf = 0>λ with equidistant nodes and discover the 

convergence of   at point t =0. Lastly, we compare the effective of 

Fourier series and Lagrange method in approximate the non-differentiable function.  

0,||)( >= λλ
λ ttf
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Dalam sebarang masalah penyelesaian hampiran, merujuk kepada pengukuran yang 

terdekat polinomial  terhadap fungsi asal ( )xp ( )xf . Biasanya, suatu penghampiran 

 diperoleh apabila perluasan kuasa siri kuasa yang lebih tinggi dihapuskan.  ( )xf

 

Salah satu idea asa dalam kalkulus pembezaan ialah suatu fungsi dapat dihampiri 

secara setempat dengan menggunakan garisan tangen fungsi tersebut. Sekiranya, 

sesuatu fungsi, f ditakrifkan dalam selang terbuka I sedemikian hingga dan 

. Jika fungsi tersebut mempunyai terbitan ke-n pada semua nlai , maka 

polynomial 

Ic∈

Nn∈ Ix∈

( )( )ccfTn ,  dikenali sebagai fungsi polinomial hampiran Taylor berdarjah 

n pada titik c. Jikalau fungsi tesebut dapat dibezakan infiniti pada selang I, maka siri 

tersebut dikenali sebagai siri Taylor fungsi f pada titik c. walaupun,siri Taylor 

merupakan idea asas dalam terbitan kalkulus,namun begitu, penghampiran dengan 

kaedah siri Taylor hanya dapat diaplikasikan jika dengan hanya jika fungsi f tersebut 

dapat diterbitkan dalam selang yang dinyatakan.  
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Dikatakan bahawa sesuatu fungsi terbitan adalah fungsi selanjar.Namun begitu,  

kenyataan “jika fungsi selanjar mengimplikasikan bahawa fungsi tersebut juga 

mempunyai fungsi terbitan” adalah tidak benar. Theorem Penghampiran Weierstrass 

menyatakan bahawa setiap fungsi selanjar yang tertakrif dalam selang tertutup 

dapat dihampirkan secara seragam, sehampir mungkin dengan fungsi yang 

diputuskan. Dengan itu, theorem ini memastikan bahawa setiap fungsi dapat 

dihampiri dengan menggunakan polinomial.  

[ ba, ]

 

Justeru  itu, dalam kajian ini telah membangunkan satu cara penghampiran yang baru 

untuk menghampiri fungsi yang tidak dapat dibezakan pada satu, dua dan tiga titik 

dengan menggunakan siri Fourier, interpolasi Lagrange dan 

konvolasi.Seterusnya,kita juga akan membincangkan asimptot Interpolasi Lagrange 

pada fungsi  di mana λ
λ ||)( ttf = 0>λ berdasarkan titik sama jarak dan seterusnya 

membincangkan penumpuan fungsi  di mana λ
λ ||)( ttf = 0>λ  pada titk t=0. 

Akhirnya, perbandingan keberkesanan tentang cara penggunaan siri Fourier dan 

interpolasi Lagrange dalam proses penghampiran fungsi tanpa terbitan dibuat. 
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CHAPTER ONE 

INTRODUCTION 

 

 

Numerical method is a procedure which is often useful, either to approximate a 

mathematical problem with a numerical problem or to solve a numerical problem or at 

least to reduce the complex numerical problem to a simple problem [9]. 

Approximation and interpolation are two important studies in Numerical analysis.  

 

Approximation is a method to say anything significant about how well approximates f 

requires qualitative information about f under appropriate conditions such as its 

continuity and differentiability. In approximation, we prefer numerical measure of 

closeness. Different approximation schemes correspond to different notions of 

convergence [9, 18].  

∧

f

  

Besides, it sometimes may be a very hard task for us to solve a problem by using exact 

formula, thus we often solve it by approximate it. Hence, approximation is an alternative 

technique for this problem.  

 

In engineering and science, one often has a number of data points, obtained by sampling 

or some experiment, and tried to construct a function which closely fits those data points. 

We called this process as curve fitting. Interpolation is specific case of curve fitting.  



Thus, we can say that interpolation is a method of constructing new data points from 

discrete set of known data points.  

 

 Interpolation consists fundamentally in finding a simple function which known as an 

interpolating function which takes the given function values at the given values of x and 

represents  adequately in a range including the non-tabular value of x. The 

value of the interpolating function at the latter value of x is taken to the value 

of . 

( )xfy =

( )xfy =

 

The difference between function approximation and interpolation is the interpolating 

function f is used to replace or simply the original function g with certain smooth 

property preserved by the discrete interpolation nodes and their neighborhood.  

The behavior of Lagrange interpolation polynomial of function ( ) 0, >= λλttf  where 

have attracted much attention of several generations of mathematicians [8]. It 

began with Bernstein in 1916 proved that the sequence of Lagrange interpolation 

polynomial to 

( 1,1−∈t )

t based on the equidistant nodes diverges at “any of the interval” of[ ]1,1− . 

The investigations of this problem continue by a few mathematicians and concluded that 

Lagrange interpolation polynomials based on equidistant nodes may have very poor 

approximation properties [10, 11, 12,20].  
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The function of t  has two tangent lines. Thus, it is a type of non-differentiable function. 

Hence, in this thesis, our main objective is to develop a new approximation method in 

approximating the possible of non-differentiable for the function ( ) λtf where 1=λ .  

 

Based on the problem, we will review the mathematical background which will assists 

us to have a clear picture in our research. This includes the review of a few types of 

approximation and interpolation and the Weierstrass Approximation Theorem, which 

provide the basic idea approaches our target that each continuous function is always can 

be approximated by the polynomial.  

 

We obtain our main result through a few examples in order to show that the non-

differentiable function can be approximated by using Fourier polynomial. First of all, we 

generate the orthogonal polynomial, and then we approximate the non-differentiable 

function by using the orthogonality and the approximation of Fourier polynomial. For 

each of the example given, we will start with the function has singularity at one point, 

then two points and following by three points. For each example given, we provide two 

graphs.  The first graph is the approximation by using Fourier polynomial of the non-

differentiable function at different orders and following by the error estimation graph of 

the function with Fourier polynomial at several orders.  

 

Next, we continue to investigate a few ideas in the process of  approximate the  

non-differentiable function by using convolution and discuss the continuous property of 

non-differentiable function.  

 3



We approximated the non-differentiable function by using the Lagrange interpolation 

polynomial method. We plot the graph of Lagrange interpolation function at different 

order and following by the graph of error estimation of the function with Lagrange 

interpolation at several orders for each example that we used. After that, we will discuss 

the result regarding the error estimation of Lagrange interpolation for function  

( ) 0, >= λλ
λ ttf  with Equidistant Nodes, describe the rate of divergence of the 

Lagrange interpolation for( )tfLN ,λ 10 << t , and discuss their convergence at 0=t . 

Lastly, we compare the effective of using Lagrange Interpolation method and Fourier 

Polynomial method in approximation of the non-differentiable function.  
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CHAPTER TWO 

MATHEMATICS BACKGROUND AND LITERATURE REVIEW 

 

 

Approximation to non-differentiable function have a very close relationship to the 

differentiable function, Fourier Series[5,8], Convolution[2,14,5], Weierstrass 

Approximation Theorem[6,8,17,18,19], Taylor Approximation Polynomial[6,7,16] and 

Lagrange Interpolation[1,7]. Thus, in this chapter, we will review topics which we will 

use in our investigation.  

 

2.1 Taylor Approximation   

 

Taylor approximation is the most basic approximation technique compared to other 

methods. We use Taylor approximation method to approximate a function with another 

function. If a function is given, we try to approximate function f  by function g by 

finding the derivative of function f  in the order n that we wish to find.   

)(xf
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Definition 2.1 [6] 

If function  f has n derivatives at point [ ]bax ,0 ∈ , the Taylor polynomial of order n for f 

at is written as  0x

( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( )

( ) ( )∑
=

−
=

−+−
′′

+−′+=

n

k

kk

n
n

n

k
xxf

xx
n

xf
xx

xf
xxxfxfxP

0

0

0
02

0
0

000

!

!
......

!2  

 

Theorem 2.2 Taylor Theorem With Cauchy Remainder [6] 

Let function has continuous derivatives on interval ( )xf 1+n [ ]ba, and let [ ]baxx ,, 10 ∈ . 

Then where ( ) ( ) ( )xRxPxf nn += ( ) ( ) ( ) ( )0
0

0

!
xf

k
xx

xP k
n

k

k

n ∑
=

−
=  is Taylor expansion at n 

degree while  is the remainder with the formula   ( )xRn

( ) ( ) ( ) ( )dttftx
n

xR n
x

x

n
n

1

0
!

1 +∫ −= .                                                                             ( )1.2

 

This integral form of remainder does require the additional hypothesis that the ( )1+n st 

derivative is Riemann integrabled. This theorem ensures that the series converges to the 

function.  

 

Since Taylor approximation requires many derivatives, and it only uses information at a 

single point, so it will not be an ideal method for uniform approximation over an interval. 

In addition, Taylor polynomial is very accurate near the middle of the interval and much 
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less accurate near the ends. Further, Taylor approximation can only  be applied when the 

function is a differentiable function.  

 

2.2 Lagrange Interpolation 

 

Lagrange approximation is one approach for interpolating with polynomials.  

If we want to approximate a function, [ ]baCf ,∈  with a polynomial 

bxaxcxp i

n

i
i ≤≤= ∑

=

 ,)(
0

, the most straightforward method is to calculate the value of f  

at the n+1 distinct points { }nixi ,...3,2,1,0 ; =  of [ ]ba,  and satisfied the equations 

.We might have problems with specifying the coefficients 

. Thus, Lagrange interpolating polynomial is the best solution for it.  

( ) nixfxp ii ...2,1,0 ,)( ==

{ nici ,...2,1,0: = }

 

Definition 2.3 [2] 

Lagrange interpolation polynomial is in the form   where ( ) )()(
0
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