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A detailed study of the surface region trypsin from bovine pancreas was performed 

to gain insight into its biological functions and interactions that helped to determine 

the binding specificity. Twenty four pockets were identified in trypsin from Protein 

Data Bank (PDB) file entry 1AUJ using Computed Atlas of Surface Topography of 

proteins (CASTp). Nevertheless, only five biggest pocket cavities were selected; 

pocket 20, 21, 22, 23, and 24 since those pocket cavities would provide insight of 

location where ligand could bind as well as to identify the cavities that can aid in 

diffusion of the ligands. It also offered the identification of surface features and 

functional region of protein. Analyses of volume, surface area, and amino acids that 

participated in each pocket cavity were also determined. Systematic molecular 

docking studies using AutoDock 3.0.5 was performed on the five largest pocket 

cavities in trypsin. A set of ten chemical ligands was docked onto five biggest pocket 

cavities. The results showed that the biggest rigid ligand 1,10-phenanthroline (PHN) 

preferred to bind at pocket 24 as indicated by the lowest docked energy value (-8.74 
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kcal/mol). Systematic analyses on molecular docking  for various metal ions such as  

Fe2+, Mg2+, Ca2+, and Zn2+ to the protein ligand complex showed almost similar 

docked energy at all pocket cavities. Docking results of trypsin-PHN complex 

showed that the lowest docked energy of -9.63 kcal/mol for Fe2+ at pocket cavity 21, 

followed by Mg2+ (-7.00 kcal/mol) at pocket 23, Ca2+ (-5.56 kcal/mol) and the 

highest docked energy value that was Zn2+ with -0.02 kcal/mol at the pocket cavity 

21. Experimental studies have focused on PHN as an intermediate ligand since PHN 

was a bidentate ligand that provides more sites for interactions which capable of 

generating stable complex. It was found that at concentration 100 µM of PHN 

increased the activity of trypsin by 40 % higher than native trypsin. However, 

analysis among the metal ions on trypsin-PHN complex indicated that Ca2+ was the 

only metal ions capable of enhancing the activity of trypsin about 10 % than native 

trypsin at the concentration of 5 µM.  
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Satu kajian terperinci terhadap kawasan permukaan trypsin telah dilakukan 

memandangkan ia memberikan  maklumat mengenai fungsi biologi dan interaksi 

yang dapat membantu dalam mengenalpasti spesifikasi ikatan yang terbentuk. 

Sebanyak 24 protein kaviti telah dikenalpasti secara automatik menggunakan 

program Pencirian Berkomputer ke atas Topografi Atlas Permukaan Protein 

(CASTp) daripada Data Bank Protein (PDB) fail 1AUJ. Namun begitu, hanya lima 

poket kaviti terbesar sahaja yang dipilih memandangkan ia memberikan maklumat 

mengenai lokasi di mana ligan berkemungkinan tinggi berinteraksi dan untuk 

mengenalpasti poket kaviti yang dapat membantu penyebaran ligan. Ia juga 

memberikan informasi sifat permukaan dan kawasan yang berfungsi bagi protein. 

Analisis mengenai isipadu, luas permukaan dan asid amino yang terlibat turut 

dilakukan. Kajian secara bersistematik telah dilakukan terhadap percantuman 
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berkomputer menggunakan AutoDock 3.0.5 terhadap lima poket kaviti terbesar pada 

trypsin. Satu set yang mengandungi sepuluh ligan telah dicantumkan secara 

berkomputer pada poket kaviti yang telah dipilih. Keputusan menunjukkan ligand 

yang paling besar dan tegar iaitu 1,10-fenantrolin dipilih untuk berinteraksi pada 

poket kaviti 24 dengan tenaga percantuman paling rendah (-8.74 kcal/mol). Kajian 

terhadap percantuman ion logam pada kompleks trypsin-ligan menunjukkan sedikit 

perbezaan. Keputusan percantuman berkomputer mempamerkan tenaga percantuman 

yang paling rendah iaitu -9.63 kcal/mol bagi Fe2+pada poket kaviti 21, diikuti dengan 

Mg2+ (-7.00 kcal/mol) pada poket kaviti 23, Ca2+ (-5.56 kcal/mol) dan tenaga 

percantuman yang tertinggi Zn2+ dengan -0.02 kcal/mol pada poket kaviti 21. 

Eksperimen makmal dilakukan dengan menumpukan PHN sebagai ligan perantara 

kerana PHN adalah ligan bidentat yang menyediakan tapak untuk berinteraksi dan 

dapat membentuk kompleks yang lebih stabil. Kepekatan PHN pada 100µM telah 

meningkatkan kadar tindak balas trypsin sebanyak 40%. Manakala analisis mengenai 

kompleks trypsin-PHN-ion logam menunjukkan Ca2+ satu-satunya ion logam yang 

mampu meningkatkan kadar tindakbalas trypsin sebanyak 10% pada kepekatan 5 

µM. 
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CHAPTER 1 
 

INTRODUCTION 
 

 

Enzymes catalyze chemical reactions with great specificity and rate enhancement. 

These reactions are the basis of the metabolism of all living organisms and provide 

tremendous opportunities for industry to carry out elegant, efficient, and economical 

biocatalytic conversions. The function of enzymes as catalyst remarkably increase 

the velocity of a reaction by 108 to 1012 fold compared with catalysts employed by 

organic chemists which are only able to accelerate reactions a 102 to 103 times over 

the non-catalyzed rate (Karp, 1999).  

 

Even more interesting, enzymes can accomplish the reactions at mild pHs, 

temperatures and pressures, thereby consuming less energy. As enzymes are non-

toxic that minimizes problems of downstream waste and by-product disposal in 

ecologically acceptable processes. However, the use of native enzyme is often 

limited by their inherent specificity. To circumvent this limitation, the development 

of such artificial enzyme has received high consideration.  

 

Recently, protein engineering and chemical modification has become a successful 

valuable tool for creating or improving protein function for practical uses. Therefore 

introducing cofactors or other reactive moieties into proteins provides enormous 

flexibility for the design of semisynthetic catalysts that could be employed for a 

variety of purposes (Davies and Distefeno, 1997). 

  



Examination of the protein pocket or cavity as suggested by Ory et al., (1998) would 

be a good site for the creation of an artificial catalyst. Despite of protein structure 

being completely organized, a protein has regions on its surface where small 

molecules or ion can bind. It is possible that there are many binding sites on the 

surface of enzymes and each binding site has only limited range of the ligands. The 

design for development of semisynthetic enzyme was based on the use of protein 

pockets that can accommodate ligand as an intermediate between the pockets at the 

surface of the enzyme with metal.  

 

In this regards, trypsin from bovine pancreas was selected as the backbone of 

designing a novel semisynthetic metalloenzyme. Trypsin was chosen due to its high 

precision information regarding its experimental kinetic data on the enzyme reaction 

(Pozsgay et al., 1981). Futhermore, it has well-defined mechanisms that are 

consistent with many structural and kinetic studies (Kraut, 1977). It has also been 

extensively used in research in developing methods for stabilizing its structures and 

improving its catalytic properties that increase attention in enzyme engineering 

(Villalonga et al., 2000). 

 

A number of metals are important in biological systems; these include the alkaline 

metals; sodium and potassium, the alkaline earths; magnesium, and transition metals; 

manganese, iron, copper and zinc. Approximately one-third of known enzymes has 

metals as part of their structure, requires metals to be added for activity or is further 

activated by metals (Conn, 1987).  
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The enzyme is in essence single, large, multidentate ligands that bind to metal which 

occupy three or more coordination sites (Gates, 1992). The activity of metal centers 

is uniquely determined by the combination of ligands provided by the enzyme and 

the geometry that is determined by the 3D structure of the enzyme. 

 

In order to understand the interaction of enzyme with other molecules such as ligand, 

molecular docking may provide the insights on how it is able to mimic and predict 

the behavior of molecules involved. Molecular docking is important in understanding 

possible interactions between a protein and a ligand in the formation of a biologically 

important protein-ligand complex.  

 

Computational approach in this area is always about employing the information in 

the three-dimensional structure that exploit the structural information in order to 

understand specific molecular recognitions event and to elucidate the function of 

target molecules (Joseph-McCarthy, 1999). In parallel of using computational 

chemistry in predicting the behaviour of the system, conducting experimental work 

is always the key to understanding on how the system works.  

 

The aim of this research is to prepare a novel semisynthetic metalloenzyme that 

consist of protein-ligand-metal complex. The objectives of this thesis is therefore   

 

• To screen for the plausible site for designing semisynthetic system 

• To design a semisynthetic system that positions coordinated ligands and   

metal ions at the protein pocket 

 3



• To study the structural interaction within the complex of semisynthetic 

metalloenzyme through computational-aided molecular modeling. 

• To charaterize the semisynthetic metalloenzyme. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

Semisynthetic system 

Introduction 

Broadly defined, semisynthetic system in enzyme is deal with the producing of 

artificial enzyme by preparing it with the new or useful conjugates in order to create 

novel properties of the enzyme. The protein can be modified by either using genetic 

engineering or chemical modification, which involves the creation and modification 

of an existing protein to change its properties and function in desired and 

predetermined way (Acquaah, 2004).  

 

Structures are designed based on fundamental rules of design and function. Enzyme 

is attractive scaffold for the design of new catalyst because their size allows the 

formation of a large number of interactions between substrate and catalyst 

(Germanas and Kaiser, 1990). The outcomes of such structuring may include altered 

substrate specificity of an enzyme or increased stability of a protein for specific 

application.   

 

Importance of engineering protein 

Protein engineering has become a valuable tool for creating new or improved 

proteins for practical use using either genetic engineering or chemical modification 

and has provided new insights into protein structure and functions. A protein 

engineer has to know a variety of interdisciplinary skills including knowledge of 
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