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This research presents the development and extension of some models for the 

growth rates of population. The existing models, i.e., logistic population model 

for single population, predator – prey model, Wangersky – Cunningham model, 

competing model and symbiosis model for two interaction populations, are 

extended by considering time delay, harvesting function and time delay in 

harvesting term in the models to get some new population models. The time 

delay is considered in the model to make the model more accurate because the 

growth rate of population does not only depend on the present size of population 

but also depends on past information. The current size of the population does not 

immediately change the growth rate of the population, but there is a time delay. 

The population as a valuable stock, for example fish population, is then 

harvested. The considered harvesting functions in the new population models are 

constant effort and constant quota of harvesting. 
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The new models are then analyzed to determine the stability of their equilibrium 

points. Before determining the stability of the equilibrium points, we provide the 

necessary and sufficient conditions for the existence of the equilibrium points. 

Since we consider population model, we just investigate the nonnegative 

equilibrium points. For some models, we determine only the sufficient conditions 

for the existence of the positive equilibrium points. The value of time delay, level 

of harvesting, initial size of populations, and parameters of the models need to be 

controlled so that the populations will not be extinct for a long time and also the 

populations give maximum profit. 

 

The methods used to study the stability of the equilibrium point are linearization 

model around the equilibrium point, eigenvalues method, phase plane analysis, 

and plotting trajectories around the equilibrium point. In order to determine the 

stability of the equilibrium point, we inspect the sign of real parts of the 

eigenvalues. The graphs of the trajectories are plotted to visualize the behavior of 

the trajectories. For the models with constant effort of harvesting, we determine 

the critical value of the effort that maximizes the profit and does not affect the 

stability of the equilibrium point. Some new theorems are constructed and proved 

to determine the time delay margin, stability switches and stability intervals. 

 

We find that there exists a certain condition so that the positive equilibrium point 

of the models becomes stable. From the analysis we find that the time delay can 

induce instability, stability switches and bifurcations in all the models except for 

the symbiosis model with time delay in harvesting term. The analysis also shows 
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that for the models with constant effort of harvesting, there exists a critical value 

for the effort of harvesting that maximizes the profit function and maintains the 

stability of the equilibrium point. 

 

When we control the values of the parameters, level of harvesting, and time 

delay, the positive equilibrium point can be found and possibly stable. The 

existence of the populations also depends on the initial value of the population 

since we just consider local stability. For the models without time delay and 

harvesting, we find the global stability of the positive equilibrium point. For the 

models with a time delay, there exists either a time delay margin or some stability 

switches so that the positive equilibrium point remains stable on the stability 

interval. The maximum profit can be found without affecting the stability of the 

equilibrium point when the values of parameters and the level of constant efforts 

of harvesting are strictly controlled. 
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Penyelidikan ini mengemukakan pembangunan dan pengembangan beberapa 

model untuk kadar pertumbuhan populasi. Model yang sedia ada, iaitu, model 

populasi logistik bagi satu populasi, model pemangsa – mangsa, model 

Wangerksy – Cunningham, model persaingan dan model simbiosis bagi dua 

populasi yang berinteraksi, dikembangkan dengan mempertimbangkan masa 

lengah, fungsi tuaian dan masa lengah dalam tuaian ke dalam model untuk 

mendapatkan beberapa model populasi yang baru. Masa lengah dipertimbangkan 

dalam model untuk membuat model menjadi lebih jitu sebab kadar pertumbuhan 

populasi bukan hanya bergantung pada saiz kini populasi tetapi ianya juga 

bergantung pada maklumat pada masa lepas. Saiz semasa populasi tidak secara 

langsung mengubah kadar pertumbuhan populasi, tetapi wujud suatu masa 

lengah. Populasi sebagai stok yang bernilai, sebagai contoh populasi ikan, 
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kemudiannya dituai. Fungsi tuaian yang dipertimbangkan ke dalam model 

populasi baru adalah tuaian dengan usaha malar dan tuaian dengan kuota malar. 

 

Model-model baru kemudian dianalisis untuk menentukan kestabilan bagi titik 

keseimbangan. Sebelum menentukan kestabilan bagi titik keseimbangan, kita 

sediakan syarat perlu dan cukup bagi kewujudan titik keseimbangan. Oleh kerana 

kita pertimbangkan model populasi, kita hanya menyiasat titik keseimbangan 

yang tak negatif. Bagi beberapa model, kita hanya menentukan syarat cukup bagi 

kewujudan titik keseimbangan yang positif. Nilai masa lengah, aras tuaian, saiz 

awal populasi dan parameter bagi model perlu di kawal supaya populasi tidak 

akan pupus untuk masa yang panjang dan juga populasi memberi keuntungan 

maksimum. 

 

Kaedah yang digunakan untuk mengkaji kestabilan bagi titik keseimbangan 

adalah pelinearan model di sekitar titik keseimbangan, kaedah nilai eigen, 

analisis satah fasa, dan melakar trajektori di sekitar titik keseimbangan. Untuk 

menentukan kestabilan titik keseimbangan, kita memeriksa tanda bahagian nyata 

nilai eigen. Graf bagi trajektori dilakar untuk menggambarkan telatah trajektori. 

Bagi model dengan tuaian usaha malar, kita tentukan suatu nilai genting bagi 

usaha tuaian yang memaksimumkan fungsi keuntungan dan tidak menjejaskan 

kestabilan titik keseimbangan. Beberapa teorem yang baru dibina dan dibuktikan 

untuk menentukan sut masa lengah, pertukaran kestabilan dan selang kestabilan.  
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Kita mendapati bahawa wujud suatu syarat tertentu supaya titik keseimbangan 

positif bagi model menjadi stabil. Daripada analisis kita dapati bahawa masa 

lengah boleh menyebabkan ketidakstabilan, boleh berlaku petukaran kestabilan 

dan bifurkasi bagi semua model kecuali model simbiosis dengan masa lengah 

dalam tuaian. Analisis juga menunjukkan bahawa bagi model dengan tuaian 

usaha malar, wujud suatu nilai genting bagi usaha tuaian yang memaksimumkan 

fungsi keuntungan dan mengekalkan kestabilan bagi titik keseimbangan. 

 

Apabila kita mengawal nilai parameter, aras tuaian dan masa lengah, titik 

keseimbangan dapat diperolehi dan berkemungkinan stabil. Kewujudan populasi 

juga bergantung kepada saiz awal populasi kerana kita hanya mempertimbangkan 

kestabilan setempat. Bagi model tanpa masa lengah dan tuaian, kita perolehi 

kestabilan sejagat bagi titik keseimbangan positif. Bagi model dengan masa 

lengah, wujud suatu sut masa lengah atau beberapa pertukaran kestabilan supaya 

titik keseimbangan positif kekal menjadi stabil pada selang kestabilan. 

Keuntungan maksimum boleh diperolehi tanpa menjejaskan kestabilan titik 

keseimbangan apabila nilai parameter dan aras usaha tuaian yang malar dikawal 

dengan ketat. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

 

A number of problems in the world usually involve continuously changing 

quantities such as distance, velocity, acceleration, or force. On the other hand, 

many problems in the life sciences deal with aggregates of individuals (human 

being, animals, fishes, trees, etc.) that are clearly discrete rather than continuous. 

Since derivatives and hence differential equations are meaningful only for 

quantities that change continuously, we might think that differential equations 

would arise only in the formulation of physical problem. If we consider the 

population in discrete time, the rate of change of the population can be denoted as 

a system of difference equations. However, if the population in an ecological 

problem is sufficiently large in quantity, it can usually be approximated or 

modeled in terms of a continuous system in which the growth rates of the 

populations can be expressed as first derivatives and the behavior of the system 

can be described by a system of differential equations.  

 

In modeling the growth rate of the population in terms of a system of differential 

equations, the growth rate usually only depends on the population size in the 

present time. In fact, the growth rate of the population does not only depend on 

the present population size but also on the past. The present population does not 

immediately affect the growth rate of the population, but there is a time delay. In 




