

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND CHARACTERISATION OF pAR141, A CRYPTIC *LACTOCOCCUS LACTIS* PLASMID, AND ITS DEVELOPMENT INTO AN EXPRESSION VECTOR

HOOI WEI YENG

T FBSB 2008 15

ISOLATION AND CHARACTERISATION OF pAR141, A CRYPTIC LACTOCOCCUS LACTIS PLASMID, AND ITS DEVELOPMENT INTO AN EXPRESSION VECTOR

By

HOOI WEI YENG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

September 2008

ACKNOWLEDGEMENTS

First, I would like to express my deepest appreciation to the chairman of my supervisory committee, Prof. Dr. Raha Abdul Rahim, for her invaluable guidance, advice and support throughout the course of this study, and her patience, useful comments and suggestions during the preparation of my thesis.

My sincere gratitude also goes to Prof. Dr. Son Radu and Assoc. Prof. Dr. Mariana Nor Shamsudin, who served on my thesis committee and kindly provided valuable advice and suggestions for this work and my thesis.

Special thanks to my fellow labmates, Ernie, Yiap, Chyan Leong, Varma, Yanti, Boon Hooi, Sab, Deela, Shahrul, Lina, Bakhtiar and Anu, and other members in Biotech 3, for their friendships, experienced advice, support and helping hands, who made the days and nights in the lab exciting and pleasant.

I wish to extend my sincere appreciations to my friends, Chin Mei, Sor Sing, Mei Ling, Wan, Joey, Phap and Kok Meng, for their kind sharing, encouragements and motivations. Grateful thanks are due to Dr. Jong Bor Chyan for his thoughtful offers, helpful suggestions and encouragements.

Last, but not least, my deepest regards are due to my family, for their endless love, care, consideration and support.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ISOLATION AND CHARACTERISATION OF pAR141, A CRYPTIC LACTOCOCCUS LACTIS PLASMID, AND ITS DEVELOPMENT INTO AN EXPRESSION VECTOR

By

HOOI WEI YENG

September 2008

Chairman: Professor Raha Abdul Rahim, PhD

Faculty: Biotechnology and Biomolecular Sciences

Lactococcus lactis is one of the best characterised lactic acid bacteria (LAB). It is widely used in traditional biotechnology as dairy starter culture for the production of cheese, butter and buttermilk. Its applications have been further expanded in modern biotechnology. *L. lactis* has been used as an alternative to *Escherichia coli* as a cell factory for the production of chemicals, pharmaceuticals and neutraceuticals. It has also been engineered to be a live oral vaccine. To engineer the cells, plasmids serve as vectors for the introduction of foreign DNA into the hosts, and hence giving the hosts unique features for special purposes. The basic knowledge and understanding of the plasmid is significant for the development of a prominent cloning and expression system. However, there are limited information and no commercially available vectors for *L. lactis* in the market currently. In this study, the Grampositive cocci isolated from cow's milk were identified by comparing the partial 16S ribosomal RNA (rRNA) gene sequences to Internet databases. Among these cocci,

eight strains were identified as L. lactis subspecies lactis and were further characterised by plasmid profiling, antibiotic resistance pattern and antimicrobial activity. Two of the strains, L. lactis M12 and M14, were found to carry multiple plasmids of various sizes, ranging from 1.6 kilo base pair (kb) to approximately 46 kb. However, they exhibited the same antibiotic resistance pattern as the plasmidless strain L. lactis MG1363. These two strains were able to inhibit the growth of other lactococcal strains isolated from the same source. The smallest plasmid from L. lactis M14, designated as pAR141, was chosen for further analysis. The restriction enzyme-digested fragments of the plasmid were cloned and sequenced. The sequence analysis of pAR141 indicated that it replicated via rolling circle (RC) mechanism. This 1,594-base pair (bp) cryptic plasmid carried essential genes required for its own replication and control, which included the transcriptional repressor repA and replication initiator repB genes, in a single operon. Other elements such as the putative coding region of a small countertranscribed RNA (ctRNA), the double strand origin (*dso*) and single strand origin (*sso*) of replication, were also identified. A constitutive expression vector, pAR1411, was constructed by cloning the erythromycin resistance marker (ery), P₃₂ promoter and a multiple cloning site (MCS) into pAR141. The functionality of the new vector was verified by using the chloramphenicol acetyltransferase (cat) gene as the reporter gene. The cat gene was successfully cloned into pAR1411 and expressed in L. lactis MG1363. In conclusion, the small lactococcal cryptic RC replicating plasmid, pAR141, was isolated and characterised. The newly developed pAR1411 could be used as an expression vector for L. lactis.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMENCILAN DAN PENCIRIAN pAR141, SUATU PLASMID KRIPTIK LACTOCOCCUS LACTIS, DAN PEMBENTUKANNYA KEPADA SATU VEKTOR PENZAHIRAN

Oleh

HOOI WEI YENG

September 2008

Pengerusi: Profesor Raha Abdul Rahim, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Lactococcus lactis adalah salah satu bakteria asid laktik (LAB) yang paling banyak dikaji ciri-cirinya. Ia banyak digunakan dalam bioteknologi tradisional sebagai kultur pemula tenusu untuk penghasilan keju, mentega dan susu mentega. Penggunaannya telah dikembangkan selanjutnya dalam bioteknologi moden. L. lactis telah digunakan sebagai "kilang sel" selain daripada Escherichia coli untuk penghasilan bahan kimia, farmaseutikal dan neutraseutikal. Ia juga telah dibina untuk menjadi vaksin oral. Untuk tujuan-tujuan tersebut, plasmid digunakan sebagai vektor bagi pengenalan DNA asing ke dalam perumahnya, dan oleh itu memberi perumahnya ciri-ciri unik bagi tujuan-tujuan tertentu. Pengetahuan asas dan pemahaman tentang plasmid adalah penting bagi pembinaan satu sistem pengklonan dan penzahiran yang menonjol. Akan tetapi, maklumat-maklumat tersebut adalah kekurangan dan vector bagi L. lactis tiada dalam pasaran pada masa kini. Dalam kajian ini, kokus Gram-positif yang dipencilkan dari susu lembu dikenalpasti

melalui perbandingan sebahagian jujukan gen RNA ribosom (rRNA) 16S dengan jujukan-jujukan yang terdapat dalam databes Internet. Di antaranya, lapan strain telah dikenalpasti sebagai L. lactis subspecies lactis dan dicirikan selanjutnya melalui profil plasmid, perintangan kepada antibiotik dan aktiviti antimikrob. Dua strain, L. lactis M12 dan M14, didapati mempunyai beberapa plasmid yang berlainan saiz, dari 1.6 kilo pasangan bes (kb) ke 46 kb. Akan teetapi, mereka menunjukkan corak rintangan antibiotik yang serupa dengan strain yang tiada plasmid L. lactis MG1363. Dua strain ini juga berupaya merencat pertumbuhan strain lactococci lain yang dipencil dari sumber yang sama. Plasmid terkecil dari L. lactis M14 yang dinamakan pAR141 telah dipilih bagi analisis selanjut. Serpihanserpihan plasmid cernaan enzim pembatas telah diklon dan jujukannya ditentukan. Analisis jujukan pAR141 menunjukkan bahawa plasmid ini bereplika melalui mekanisma replikasi bulatan bergulung (rolling circle; RC). Plasmid kriptik yang bersaiz 1,594 pasangan bes (bp) ini membawa gen-gen yang diperlukan bagi replikasi dan pengawalannya sendiri, yang termasuk gen penindas transkripsi repA dan gen pemula replikasi *repB*, dalam satu operon tunggal. Unsur-unsur lain seperti tapak pengekodan RNA transkrip-bertentangan (countertranscribed RNA; ctRNA), "double strand origin" (dso) dan "single strand origin" (sso) replikasi, juga dikenalpasti. Satu vektor penzahiran berterusan, pAR1411, telah dibina dengan pengklonan penanda kerintangan terhadap eritromisin (ery), promoter P₃₂ dan tapak pengklonan berganda (MCS) ke dalam pAR141. Keberfungsian vektor baru ini telah disahkan dengan menggunakan gen asetiltransferase kloramfenikol (cat) sebagai gen pelapor. Gen cat telah berjaya diklonkan ke dalam pAR1411 dan dizahirkan dalam L. lactis MG1363. Sebagai kesimpulan, satu plasmid replikasi RC Lactococcus kecil,

pAR141, telah dipencil dan dicirikan. pAR1411 yang baru dibina ini boleh dijadikan sebagai vektor penzahiran bagi *L. lactis*.

I certify that an Examination Committee has met on 5 September 2008 to conduct the final examination of Hooi Wei Yeng on her degree of Master of Science thesis entitled "Isolation and Characterisation of pAR141, a Small *Lactococcus lactis* plasmid, and Its Development into an Expression Vector" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the degree of Master of Science.

Members of the Examination Committee were as follows:

Tan Wen Siang, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Khatijah Mohd Yusoff, PhD

Professor Datin Paduka Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Sieo Chin Chin, PhD

Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Zulkeflie Zamrod, PhD

Vice President Research and Development Inno Biologics Sdn. Bhd. (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 27 November 2008

viii

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Raha Abdul Rahim, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Son Radu, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Member)

Mariana Nor Shamsudin, PhD

Associate Professor Faculty of Medicine and Health Sciences Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date: 19 December 2008

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

HOOI WEI YENG

Date: 28 October 2008

TABLE OF CONTENTS

		Page
ABSTRA	ACT	ii
ABSTRA	AK	iv
ACKNO)WLEDGEMENTS	vii
APPRO	VAL	viii
DECLA	RATION	Х
LIST OI	F TABLES	xiv
LIST OI	F FIGURES	XV
LIST OI	F ABBREVIATIONS	xvii
CHAPT	ER	
1	INTRODUCTION	1
2	LITERATURE REVIEW	3

LITE	RATURE REVIEW	3	
2.1	Lactic acid bacteria	3	
2.2	The genus Lactococcus		
2.3	Lactococcus lactis		
2.4	Antibiotic resistance in Lactococcus lactis	7	
2.5	Bacteriocins produced by Lactococcus lactis	9	
2.6	Plasmids in Lactococcus lactis	10	
2.7	Plasmid replication	12	
	2.7.1 Theta replication	12	
	2.7.2 Rolling circle replication	13	
	2.7.3 Strand displacement replication	18	
	2.7.4 Control of plasmid replication	20	
2.8	Gene Cloning and Expression in Lactococcus lactis	22	

3 **IDENTIFICATION AND CHARACTERISATION OF** 26 *LACTOCOCCUS LACTIS* **ISOLATED FROM RAW MILK**

3.1 3.2

Introduction		
Materials and methods		
Bacterial strains and culture conditions	27	
Extraction of genomic DNA from	27	
Lactococcus lactis		
Agarose gel electrophoresis	28	
PCR amplification of a fragment of 16S	29	
rRNA gene		
Cloning of PCR products and transformation	31	
Preparation of <i>E. coli</i> competent cells	31	
Transformation of <i>E. coli</i>	32	
Plasmid isolation from E. coli	32	
Verification of recombinant plasmid	33	
Sequence determination and analysis	34	
Plasmid isolation from Lactococcus lactis	35	
Plasmid profiling	36	
	ls and methods Bacterial strains and culture conditions Extraction of genomic DNA from <i>Lactococcus lactis</i> Agarose gel electrophoresis PCR amplification of a fragment of 16S rRNA gene Cloning of PCR products and transformation Preparation of <i>E. coli</i> competent cells Transformation of <i>E. coli</i> Plasmid isolation from <i>E. coli</i> Verification of recombinant plasmid Sequence determination and analysis Plasmid isolation from <i>Lactococcus lactis</i>	

	3.2.13	Antibiotic susceptibility test	36
	3.2.14	Antimicrobial activity test	36
3.3	Results		40
	3.3.1	PCR amplification of 16S rRNA gene	40
		fragment	
	3.3.2	Cloning of partial 16S rRNA gene	40
	3.3.3	Sequence determination and analysis	42
	3.3.4	Plasmid profiling	42
	3.3.5	Antibiotic susceptibility test	45
	3.3.6	Antimicrobial activity test	45
3.4	Discussi	ion	49
3.5	Conclus	ion	59
СНА	RACTER	RISATION OF LACTOCOCCAL	60
	SMID pA		
4.1	Introduc		60
4.2		ls and methods	61
	4.2.1	Bacterial strains, plasmids and culture	61
		conditions	
	4.2.2	Isolation of single plasmid from L. lactis	62
	4.2.3	Restriction enzyme mapping of pAR141	62
	4.2.4	Cloning of pAR141 into pUC19	62
	4.2.5	Sequence determination and analysis of pAR141	64
	4.2.6	Analysis of plasmid replication by Southern	65
		hybridisation	
4.3	Results		69
	4.3.1	Isolation of pAR141	69
	4.3.2	Restriction enzyme mapping of pAR141	69
	4.3.3	Cloning of pAR141 into pUC19	69
	4.3.4	Sequence analysis of pAR141	71
	4.3.5	Analysis of plasmid replication by Southern hybridisation	85
4.4	Discussi	•	89
4.5	Conclus	ion	97
CON	ISTRUCT	ION OF A CONSTITUTIVE	98
		VECTOR FOR LACTOCOCCUS LACTIS	10
5.1	Introduc	ction	98
5.2	Material	ls and methods	98
	5.2.1	Bacterial strains, plasmids and growth conditions	98
	5.2.2	Construction of constitutive expression vector	100
	5.2.3	Transformation of recombinant plasmids	103
	5.2.4	Cloning and expression of heterologous gene	105
		in pAR1411	
5.3	Results		107
	5.3.1	Construction of cloning and expression	107

		5.3.2 5.3.3	vector Transformation of pAR1411 into <i>E. coli</i> Cloning and expression of heterologous gene in pAR1411	110 113
	5.4	Discuss	ion	116
	5.5	Conclus	sion	120
6 7			ISCUSSION N AND RECOMMENDATIONS	121 125
APPENDICES14BIODATA OF STUDENT15			126 145 159 160	

LIST OF TABLES

Table		Page
3.1	Antibiotic discs (Oxoid) used in the antibiotic susceptibility test	37
3.2	Sequence similarity of the partial 16S rRNA gene fragment of the milk strains	43
3.3	Antibiotic susceptibility of <i>L. lactis</i> analysed using agar-disc diffusion method	46
4.1	Bacterial strains and plasmids used in this study	61
4.2	Restriction enzymes (REs) used for mapping of pAR141	63
4.3	BLASTn similarity search result of the putative sso region of pAR141	76
4.4	General characteristics of the putative ORFs	83
5.1	Bacterial strains and plasmids	99
5.2	Primer sequences and characteristics	101
5.3	Sequences and characteristics of primers	106

LIST OF FIGURES

Figure		Page
2.1	Diagram of origins of theta replication (A) and the replication mechanism as exemplified by the replication of ColE1 (B)	14
2.2	Model for the replication of rolling circle replicating plasmids (adopted from Khan, 2000)	16
2.3	Model for the strand displacement replication mechanism (adopted from del Solar <i>et al.</i> , 1998)	19
3.1	The secondary structure model for prokaryotic 16S rRNA	30
3.2	PCR-amplified partial 16S rRNA gene using P1 and P4 primers	41
3.3	RE digestion verification of the insertion of partial 16S rRNA gene fragment in the vector	41
3.4	Plasmid profile of lactococcal strains isolated from raw milk	44
3.5	Agar spot test of the eight lactococcal strains using <i>L. lactis</i> M16 as indicator strain	47
3.6	Flip-streak analysis of M12 (A) and M14 (B) to verify their antimicrobial activity	48
3.7	Agar well diffusion analysis of M12 (A) and M14 (B) against M4	48
4.1	Schematic diagram of the capillary transfer by Southern blotting	66
4.2	Plasmids isolated from L. lactis M14	70
4.3	RE digested pAR141 for the construction of RE map	70
4.4	RE digestion analysis of putative recombinant plasmids pUC141F	72
4.5	Purified plasmids pUC141F04 and pUC141F10 for sequence determination	72
4.6	Schematic plasmid maps of pUC141F04 and pUC141F10	73
4.7	The schematic physical and genetic map of pAR141	74
4.8	Multiple sequence alignment of the putative <i>sso</i> region of pAR141 (position 257-454) with that of the four different types of <i>sso</i> s, as well as the sequence of pNZ4000 with high similarity	77
4.9	Complete sequence of plasmid pAR141, along with the features	79
4.10	Multiple sequence alignment of regions encompassing <i>dso</i> of pAR141 and some closely related plasmids	81
4.11	Multiple sequence alignment of replication initiation Rep proteins	84
4.12	Sequence comparison of ctRNA of pAR141 with RNA II of pLS1	86

4.13	Agarose gel electrophoresis (A) and Southern hybridisation analysis (B) for plasmid replication mechanism study	88	
5.1	Schematic diagram showing the construction of expression vector pAR1411		
5.2	Sequence alignment of primer CmF with <i>orf32</i> gene region, with nucleotides showed in triplets	106	
5.3	PCR amplified pMG36e fragment for cloning into pAR141	108	
5.4	Putative recombinant plasmids from transformants	108	
5.5	Analysis of putative recombinant plasmids digested with <i>Hin</i> dIII and <i>Eco</i> 321	109	
5.6	Plasmid extracted from <i>E. coli</i> transformed with different DNA sources	111	
5.7	RE digestion analysis of plasmids isolated from <i>E. coli</i> transformants	111	
5.8	PCR checking of plasmid preparations of E. coli transformants	112	
5.9	PCR amplicon of <i>cat</i> gene	114	
5.10	RE digestions of <i>cat</i> gene amplicon and pAR1411	114	
5.11	Agarose gel of pAR1411-cat	115	
5.12	RE analysis of putative recombinant plasmid pAR1411-cat for verification	115	

LIST OF PUBLICATIONS

<u>Journal</u>

1. Raha, A.R., <u>Hooi, W.Y.</u>, Mariana, N.S., Radu, S., Varma, N.R.S. and Yusoff, K. 2006. DNA sequence analysis of a small cryptic plasmid from *Lactococcus lactis* subsp. *lactis* M14. *Plasmid* 56: 53-61.

Proceedings

- <u>Hooi, W.Y.</u>, Mariana, N.S., Son, R. and Raha, A.R. 2007. Construction of a constitutive expression vector for *Lactococcus lactis*. Proceedings of the 29th Symposium of Malaysian Society for Microbiology 2007 Microbes: The key to a Sustainable Future, 24-26 November 2007, Primula Beach Resort, Terengganu. (No pagination)
- <u>Hooi, W.Y.</u>, Foo, H.L. and Raha, A. R. 2006. Isolation and Partial Sequence Analysis of a Putative Bacteriocin Gene from Milk strain *Lactococcus lactis* M12. Proceedings 28th Symposium of the Malaysian Society for Microbiology: Harnessing Microbes for the Advancement of Biotechnology, 24-27 November 2006, Renaissance Melaka Hotel, Malacca. pp. 399-401.
- <u>Hooi, W.Y.</u>, Raha, A.R., Radu, S., Mariana, N.S. and Varma, N.R.S. 2005. Molecular Identification and Characterization of Lactococcal Isolates from Cow's Milk. Proceedings 27th Symposium of the Malaysian Society for Microbiology: Innovation Through Microbes, 24-27 November 2005, Grand Plaza Parkroyal Penang. pp. 254-256.

Posters and Abstracts

- <u>Hooi, W.Y.</u>, Mariana, N.S., Son, R., Yusoff, K., Raha, A.R. 2007. Molecular characterization of a small cryptic plasmid of *Lactococcus lactis* for vector construction. Pameran Reka Cipta, Penyelidikan dan Inovasi (PRPI) 2007: Penyelidikan Cemerlang Mencetus Inovasi. 27-29 November 2007, Dewan Besar (PKKSSAAS), UPM. pp. 384.
- <u>Hooi, W.Y.</u>, Raha, A.R., Radu, S., Mariana, N.S. and Yusoff, K. 2006. Sequence analysis and molecular characterization of small indigenous plasmid pAR141 from *Lactococcus lactis* M14. Abstract of Trends in Biotechnology 3, 4-6 September 2006, Marriott Putrajaya. pp. 50-51.

LIST OF ABBREVIATIONS

~	approximately
A ₂₆₀	Absorbance at 260 nm
a.a.	amino acids
ABC	ATP-binding cassette
Amp ^r	ampicillin resistant
AT	adenosine and thymine
ATCC	America Type Culture Collection
ATP	Adenosine triphosphate
BLAST	Basic Local Alignment Search Tool
bp	base pair
CaCl ₂	calcium chloride
CAMHB	cation-adjusted Mueller-Hinton broth
CDD	Conserved Domain Database
Chl ^r	chloramphenicol resistant
CLSI/NCCLS	Clinical and Laboratory Standard Institute/NCCLS
ctRNA	countertranscribed RNA
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
DDBJ	DNA Data Bank of Japan
DIG	digoxigenin
DR	direct repeat
dsDNA	double-stranded DNA
dso	double strand origin
EDTA	ethylene diamine tetraacetic acid
EMBL	European Molecular Biology Laboratory
Erm ^r	erythromycin resistant
FDA	Food and Drug Administration
G+C	guanine plus cytosine
g	gravity force
GM17	M17 supplemented with 0.5% (w/v) glucose
GRAS	generally regarded as safe
HTH	αhelix-turn-αhelix
IR	inverted repeat
IS	insertion sequence
kb	kilo base pair
kDa	kilo Dalton
LAB	lactic acid bacteria
LB	Luria Bertani
LSM	LAB susceptibility test medium
LZ	leucine zipper
Μ	Molar
MCS	multiple cloning sites
MgCl ₂	magnesium chloride
MgSO ₄	magnesium sulphate
MIC	minimum inhibition concentration
Mol%	mole percent
mRNA	messenger RNA

Ν	Normality
NaCl	sodium chloride
NaOH	sodium hydroxide
NCBI	National Center for Biotechnology Information
NICE	nisin-controlled gene expression
nt	nucleotide
OD_{600}	optical density at 600 nm
ORF	open reading frame
PCI	phenol-chloroform-isoamyl alcohol
PCR	polymerase chain reaction
PFGE	pulsed-field gel electrophoresis
RAPD	randomly amplified polymorphic DNA
RBS	ribosome binding site
RC	rolling circle
RCR	rolling circle replicating
rDNA	rRNA gene
RDP-II	Ribosomal Database Project
RE	restriction enzyme
RFLP	restriction fragment length polymorphism
R/M	restriction/modification
RNA	ribonucleic acid
rpm	revolution per minute
rRNA	ribosomal RNA
sdH ₂ O	sterile distilled water
SDS	sodium dodecyl sulphate
SGM17	GM17 containing 0.5 M sucrose
SGM17MC	SGM17 containing 20 mM MgCl ₂ and 2 mM CaCl ₂
SSB	single-stranded DNA binding protein
SSC	NaCl-sodium citrate
ssDNA	single-stranded DNA
ssi	single-stranded initiation
SSO	single strand origin
subsp.	subspecies
TAE	Tris-acetate-EDTA
T _m	melting temperature
U	unit
Ŭ V	Volt
v v/v	volume per volume
w/v	weight per volume
X-gal	5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
2x-5a1	5 515mo-4-emoto-5-maoryr-p-D-garactopyranosiae

CHAPTER 1

INTRODUCTION

As a member of the lactic acid bacteria (LAB) which has a long history of safe use in food fermentation, *Lactococcus lactis* was given the generally regarded as safe (GRAS) status by U.S. Food and Drug Administration (FDA). It has been widely used in the manufacture of dairy products such as cheese and buttermilk. However, the traits of lactose metabolism and protein degradation frequently experienced spontaneous loss during consecutive subcultures (McKay *et al.*, 1972). In order to stabilise and enhance these industrially important traits, extensive biochemical, physiological and genetic studies have been carried out on this valuable Grampositive bacterium.

As information accumulates, researchers start to exploit the potential of *L. lactis* other than in traditional dairy fermentation. The capability of this bacterium to be used as production host of various proteins, chemicals, pharmaceuticals and neutraceuticals, either homologous or heterologous, has been examined (Hugenholtz and Smid, 2002). Currently, the application of *L. lactis* as vaccine delivery vector is being widely explored (Mercenier *et al.*, 2000).

Genetic modification techniques are used in the strain improvements of *L. lactis* as dairy starter, as well as in the engineering of this bacterium for modern applications. Generally, plasmids are used as vectors for these purposes. Plasmids are extrachromosomal DNA elements which replicate autonomously. These plasmids have to be characterised thoroughly to reveal their functions and interactions with

their host which could allow better control and enhanced performance. Although many studies on lactococcal plasmids have been reported, only a limited number have been analysed in detail. From these studies, several cloning and expression vectors have been developed. These vectors have shown to produce recombinant proteins successfully. The application of these vectors can be further improved by the addition of certain elements such as tags and signal peptides which could serve under different conditions and for various purposes. Unfortunately, at present, none of these vectors are commercially available, and thus, restrict strain improvements.

As the potential of advanced biotechnology applications of this Gram-positive host is growing, this project is aimed to contribute to the fundamental knowledge of lactococcal plasmid biology, as well as to develop a constitutive expression vector. The main objectives of this study are:

- To identify and characterise Lactococcus lactis isolates
- To isolate and characterise a small lactococcal plasmid
- To construct an expression vector for *Lactococcus lactis*

The lactococcal strains identified from the milk isolates (Chapter 3) were used as the source of new lactococcal plasmids. Selected plasmid was then further studied (Chapter 4) before an expression vector was constructed based on it (Chapter 5).

CHAPTER 2

LITERATURE REVIEW

2.1 Lactic Acid Bacteria

Lactic acid bacteria (LAB) are a heterologous group of bacteria widespread in nature and are commonly found in milk and dairy products, plant material, silage, and intestinal tracts and mucous membranes of humans and animals (Aguirre and Collins, 1993). They are fastidious organisms and require carbohydrates, amino acids, peptides, nucleic acid derivatives and vitamins for growth. As delineated by their name, LAB are referred to a group of Gram-positive non-sporeforming bacteria that produce lactic acid as the major end-product from carbohydrate fermentation. They are either cocci or rod shape and generally have a DNA G+C content of less than 50 mol% (Stackebrandt and Teuber, 1988).

Traditionally, LAB consisted of the genera *Lactobacillus*, *Leuconostoc*, *Pediococcus* and *Streptococcus* (Aguirre and Collins, 1993). Due to the development in nucleic acid hybridisation and sequencing techniques, LAB have undergone major changes in their taxonomy and nomenclature. For example, streptococci were divided into three genetically distinct genera: *Streptococcus*, *Enterococcus* and *Lactococcus* (Schleifer *et al.*, 1985; Schleifer, 1987). New genera *Carnobacterium*, *Tetragenococcus* and *Vagococcus* have been established from previously acid-sensitive lactobacilli, *Pediococcus halophilus* and motile streptococci, respectively, while *Weissella* and *Oenococcus* were mainly derived from *Leuconostoc* (Stiles and Holzapfel, 1997).

Most of the LAB are involved in food fermentation and preservation. Some of them are used as probiotics which are live microbial supplements that beneficially affect the host by improving its intestinal microbial balance (Fuller, 1989). On the other hand, some *Pediococcus*, *Leuconostoc* and *Lactobacillus* are implicated in food spoilage (Stiles and Holzapfel, 1997). The association of some of the LAB such as *Enterococcus* sp. and *Lactococcus garvieae* with human and animals infections has also been reported (Salminen *et al.*, 1998; Fihman *et al.*, 2006).

2.2 The Genus Lactococcus

The genus Lactococcus was established in 1985 and encompasses most but not all of the Lancefield group N lactic streptococci (Schleifer et al., 1985). They are spherical or ovoid in shape $(0.5-1.2 \times 0.5-1.5 \ \mu m)$, without capsules and endospores, nonmotile and occur in pairs or short chains in liquid media. They grow at 10°C but not at 45°C, with an optimum temperature at 30°C. They are facultative anaerobes, with an absence of growth at the upper-most level in broth culture. However, they are able to aerobically grow on agar media containing fermentable carbohydrate and supplemented with yeast extract, with very small and discrete surface colonies. These chemoorganotrophs have complex nutritional requirements and cannot survive with 0.5% NaCl. They are commonly found in dairy and plant products. Lactococci are homofermentative bacteria that ferment a number of carbohydrates and produce L(+)-lactic acid without gas production. The final pH in glucose broth is 4.0-4.5. They are catalase and oxidase negative (Holt et al., 1994). The genus includes L. lactis, L. garvieae, L. piscium, L. plantarum and L. raffinolactis. L. lactis have been divided into three subspecies: lactis, cremoris and hordniae (Schleifer et al., 1985; van Hylckama Vlieg et al., 2006). Lactococci can be identified by 16S

rRNA gene sequence analysis. Polymerase chain reaction (PCR) detection of specific targets such as the *pepT* tripeptidase gene, *pepV* dipeptidase gene, histidine operon and dihydropteroate synthase gene has been developed for fast screening and identification of lactococci (Aoki *et al.*, 2000; Mori *et al.*, 2004; Ouzari *et al.*, 2006). Other than that, randomly amplified polymorphic DNA (RAPD), pulsed-field gel electrophoresis (PFGE) of restriction enzyme (RE)-digested genomic DNA, electrophoretic esterase profile or whole cell protein profile have been applied for the typing of the strains (Kelly and Ward, 2002; de la Plaza *et al.*, 2006; Ouzari *et al.*, 2006).

2.3 Lactococcus lactis

L. lactis is among the immensely studied LAB, with respect to its genetics, molecular biology, physiology and metabolism. It was the first bacterial pure culture obtained by Joseph Lister in 1878, which was known as *Bacterium lactis* at that time (Stackebrandt and Teuber, 1988). It was previously grouped under the genus *Streptococcus* as *S. lactis*, and was then transferred to the genus *Lactococcus* based on the results of 16S rRNA analyses and extensive DNA-rRNA hybridisation studies (Schleifer *et al.*, 1985).

L. lactis can be isolated from milk and plant surfaces (Nomura *et al.*, 2006). It is widely used in the fermentation of dairy products, especially the subspecies *lactis* and *cremoris*. Traditionally, they are used as starter culture for the production of cheeses and buttermilk. These two commercially important subspecies could be differentiated based on the properties of subsp. *lactis* to metabolise arginine, to grow at temperatures above 37°C, and to tolerate salt, in contrast to subsp. *cremoris*

