

UNIVERSITI PUTRA MALAYSIA

CONSTRUCTION OF FLASH METHOD FOR DETERMINING THERMAL DIFFUSIVITY OF SOLIDS

TEH CHZE LING

FSAS 2001 9

CONSTRUCTION OF FLASH METHOD FOR DETERMINING THERMAL DIFFUSIVITY OF SOLIDS

By

TEH CHZE LING

Thesis Submitted in Fulfilment of the Requirement for the Degree of Master of Science in the Faculty of Science and Environmental Studies University Putra Malaysia

October 2001

TABLE OF CONTENTS

Page ii

ABSTRACT		ii
		iv
	EDGEMENTS	vi
APPROVAL	/	vii
	ION	ix
LIST OF FIG	GURES	xiii
	BLES	xvi
	ATES	xvii
CHAPTER		
Ι	INTRODUCTION	
	Background of Thermal Diffusivity	1
	Objective of Study	3
	Importance of Study	4
	Scope of Study	5
II	LITERATURE REVIEW	
	Flash Technique	6
	Standard Malaysian Rubber	9
	Epoxidized Natural Rubber (ENR)	12
	Preparation	12
	Physical Properties of ENR	13
	Application of ENR	15
	Vulcanization	15
	Carbon Black	17
	Surface Area	18
	Particle Size	18
	Structure	19
	Surface Chemistry	19
	High Tc Ceramic Superconductor	21
III	THEORY	
	Theory of Flash Technique	23
	Estimation of Errors and Correction	28
	Finite Pulse Time Effect	29
	Radiation Heat Loss Effect	31
	Thermal Diffusivity Determination Using The Iterative	
	Procedures	32
	Thermal Conductivity of Solids	34

Х

Heat Transport Property of Polymer	
Thermal Transport Properties for Crystalline and	
Amorphous Polymers	36
Heat Transport for Amorphous Polymers at	
T>150K	40
Heat Transport in High Tc Superconductor	
Thermal Conductivity in Normal State	41
Thermal Conductivity in Superconducting State	43

IV METHODOLOGY

Flash Method Detection System.46Photo flash.46Sample.48Sample holder.49Thermocouple.50Other apparatus.50
Sample48Sample holder49Thermocouple50
Sample holder
Thermocouple
-
Other apparatus 50
Data Acquisition Card (PCI-6024E)
Graphical Programming with Labview
Al Config.vi
Al Start.vi
Al Read.vi
Save.vi
Experimental Procedure
X-Ray Diffraction Analysis

 \mathbf{V}

RESULTS AND DISCUSSION

Calibration	67
Sample Thickness	72
Thermal Diffusivity of SMR-5, ENR-25 and ENR-50	75
Scanning Electron Microscopy	80
The Effect of Carbon Black on Thermal	
Diffusivity	80
The Effect of Epoxidation on Thermal Diffusivity	87
Thermal Diffusivity of Ceramic Superconductor	94
Data Analysis Using Iterative Procedure	94
The Effect of Substitution of Samarium on	
Thermal Diffusivity	100

VI CONCLUSION AND RECOMMENDATIONS

Summary	104
Recommendation	106

BIBLIOGRAPHY	108
APPENDIX A-1	
APPENDIX B-1	113
APPENDIX B-2	115
APPENDIX C-1	116
VITA	117

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of requirement for the degree of Master of Science

CONSTRUCTION OF FLASH METHOD FOR DETERMINING THERMAL DIFFUSIVITY OF SOLIDS

By

TEH CHZE LING

October 2001

Chairman: Zaidan Abdul Wahab, Ph.D.

Faculty : Science and Environmental Studies

In this study, flash method was employed in determining thermal diffusivity of solids at room temperature. This method is applicable to any flash apparatus (in this study we used Minolta Photoflash) using a setup similar to the one presented by Parker et al.. The first part of the study is undertaken to calibrate the setup with a sample of known thermal diffusivity. The results clearly indicate that the thermal diffusivity of the calibration sample correlated well with the results from literature. Apart from that, a data acquisition system that simulate the front panel of an oscilloscope is developed using LabView RT 5.1, a graphical programming language for acquiring experimental data.

For practical purposes, we assume that the boundary conditions of the method are obeyed. Two data reduction methods, the conventional method and the iterative procedure were employed in determining the thermal diffusivity. The conventional method (correction of finite pulse time effect, non-uniform heating and heat loss)

was the commonly used method to determine the thermal diffusivity. However, the latter was found to allow one to determine thermal diffusivity with good accuracy without the need to normalize the non-dimensional curve and determine the $t_{1/2}$ manually.

The second part of the study involves the testing of the setup with rubber and superconductor sample. The effect of carbon black was investigated in SMR-5, ENR-25 and ENR-50. It is found that the thermal diffusivity increase with the increased in carbon black content for all three rubber samples. Study on the effect of epoxidation was also carried out. Since, the variation of thermal diffusivity cannot be concluded, an attempt to determine the crystallinity from the X-ray diffraction was carried out to assist in explaining the changes. The experimental results indicate that as the level of epoxidation increases the thermal diffusivity decreases for rubber without carbon black and the thermal diffusivity increases for rubber with carbon black as suggested by its crystallinity. In addition, the role of samarium doping in causing differences in the nature of thermal diffusivity for Bi-based superconductor was also reported. It is found that thermal diffusivity decrease with the increase in samarium.

It is recommended that future research and development be carried out to fully automate the whole sequence of thermal diffusivity measurements for both room and high temperature.

