

UNIVERSITI PUTRA MALAYSIA

ISOLATION AND ENZYMATIC STUDIES OF DYE-DEGRADING WHITE-ROT FUNGUS

AHMAD AFIF ABDUL AZIZ

FBSB 2013 34

ISOLATION AND ENZYMATIC STUDIES OF DYE-DEGRADING WHITE-ROT FUNGUS

By

AHMAD AFIF ABDUL AZIZ

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

December 2013

All material contained within the thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

ISOLATION AND ENZYMATIC STUDIES OF DYE-DEGRADING WHITE ROT FUNGUS

By

AHMAD AFIF ABDUL AZIZ

December 2013

Chairman: Assoc. Prof. Mohd Yunus Abd Shukor, PhD

Faculty : Biotechnology and Biomolecular Sciences

Dye is present continuously in the environment. They are designed to be permanent and resistant to degradation by their physical and chemical properties. Therefore, increasing discharge and improper management of solid and liquid industrial dye wastes have generated a great concern among industrialists and the scientific community due to their negative effects. To date, effective method to treat recalcitrant dye is still lacking, to ensure safe disposal of dye effluents. In this regards, this study had been designated to isolate and screen dye degrading white rot fungi from local environments in Peninsular Malaysia; to identify the selected white rot fungus that showed the best degrading ability; to evaluate the degradation of azo dye by the selected white-rot fungus and determine its optimum conditions; and to partially purify and partially characterize the ligninolytic enzyme. Thirty nine white rot fungi (WRF) from soil and wood samples were isolated in Selangor, Kelantan, Pahang and Terengganu and tested for their capability to degrade textile azo dyes (Orange G (C.I. 16230), Ponceau 2R (C.I. 16450), Amaranth (C.I. 16185), Trypan Blue (C.I. 23850) dan Direct Blue 71 (C.I. 34140). Thirty-three isolates showed positive results with varying degrees of dye degradation. Two isolates (Isolate 4-UPM and Isolate 17-UPM) from Universiti Putra Malaysia (UPM) campus in Selangor were selected for further studies owing to their ability to completely decolourize all the azo dyes within the shortest time. Qualitative study on defined solid media showed Isolate 17-UPM and Isolate 4-UPM were capable of degrading all five dyes under nitrogen-limiting conditions, with glucose as the source of energy. When cultured in two-stage liquid medium for quantitative screening, Isolate 17-UPM degradation rate was in the range of 96 to 99% of 0.2 g/L while Isolate 4-UPM showed a range of 38 to 96 % of all the tested azo dyes. Both isolates degraded the dyes within one to ten days at different rates. Isolate 17-UPM and Ponceau 2R were used for further studies. Overall, the degradation rates of Isolate 17-UPM in agitated

cultures were higher by nearly ten times compared to static cultures. Ponceau 2R was degraded optimally when incubated between 35 to 40°C in agitated cultures at the initial pH of 6.

The assays for lignin modifying enzymes involved in the azo dye degradation showed the presence of laccase only, while lignin peroxidase and manganese peroxidases were absent. There was a significant correlation between the laccase activity profile in agitated liquid cultures and the azo dye degradation profile where both optimum temperature and initial pH were 40°C and pH 6, respectively. The laccase produced by Isolate 17-UPM during azo dye degradation was partially purified using DEAE Cellulose anion exchanger and ZorbaxR GF-250 gel filtration column. The partial purified enzyme showed a $K_{m (app)}$ value of 0.28 mM, $V_{max (app)}$ value of 100 µmol/min.ml, optimum temperature activity at 40 to 50°C and pH 3.0 to 5.0 when 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) was used as the substrate. It was also shown to be most stable at room temperature and pH 6.0 to 7.0. The Isolate 17-UPM was further characterized at molecular level through ITS region gene sequencing. The internal transcribe spacer region of the isolated DNA was amplified by PCR using the primers recognized as, primer ITS 1F and ITS 4. Isolate 17-UPM was identified as Coriolopsis sp. strain aff17. In this study, a whiterot fungus capable of degrading azo dyes was isolated, identified and optimized for dye degradation, and the enzyme involved was partially purified and characterized.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMENCILAN DAN KAJIAN ENZIM KULAT REPUT-PUTIH YANG MENGURAI PEWARNA

Oleh

AHMAD AFIF ABDUL AZIZ

Disember 2013

Pengerusi: Prof. Madya. Mohd Yunus Abd Shukor, PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Pewarna wujud secara berterusan dalam alam sekitar. Ia direka untuk menjadi kekal dan tahan penguraian kepada sifat-sifat fizikal dan kimia pewarna tersebut. Oleh itu, peningkatan pelepasan dan salah pengurusan sisa pewarna industri pepejal dan cecair telah menjadi satu kebimbangan besar di kalangan usahawan-usahawan dan komuniti saintifik disebabkan oleh kesan negatif mereka. Setakat ini, kaedah yang berkesan untuk merawat sisa pewarna masih kurang, untuk memastikan pelupusan selamat efluen pewarna. Oleh itu, kajian ini telah direka untuk memencil dan menyaring kulat reput putih dari persekitaran tempatan di Semenanjung Malaysia yang boleh mengurai pewarna; untuk mengenal pasti kulat reput putih yang dipilih; untuk menilai keupayaan kulat reput putih penguraian pewarna azo yang dipilih dan menentukan syarat-syarat alam sekitar yang optimum; dan untuk penulenan separa dan pencirian separa enzim pengubah lignin. Tiga puluh sembilan kulat reput putih dari sampel tanah dan kayu di Selangor, Kelantan, Pahang dan Terengganu telah dipencilkan dan diuji keupayaan untuk menguraikan pewarna tekstil azo Orange G (CI 16230), Ponceau 2R (CI 16450), Amaranth (CI 16185), Trypan Blue (CI 23850) dan Direct Blue 71 (CI 34140). Tiga puluh tiga pencilan menunjukkan hasil yang positif dengan pelbagai peringkat penguraian pewarna. Dua pencilan (Isolat 4-UPM dan Isolat 17-UPM) dari Universiti Putra Malaysia (UPM) kampus di Selangor telah dipilih untuk kajian lanjut berdasarkan keupayaan untuk menguraikan keseluruhan warna pewarna azo dalam masa paling singkat. Kajian kualitatif di media pepejal menunjukkan Isolat 17-UPM dan Isolat 4-UPM mampu menguraikan kesemua lima pewarna dalam keadaan nitrogen yang terhad, dengan glukosa sebagai sumber tenaga. Apabila dikultur dalam medium cecair dua peringkat bagi penyaringan kuantitatif, kadar penguraian Isolat 17-UPM adalah dalam lingkungan 96 hingga 99

% daripada 0.2 g/L manakala Isolat 4- UPM menunjukkan lingkungan 38 hingga 96% bagi semua pewarna azo yang diuji. Kedua-dua pencilan menguraikan pewarna dalam tempoh satu hingga sepuluh hari pada kadar yang berbeza. Isolat 17- UPM dan Ponceau 2R telah digunakan untuk kajian lanjutan. Secara keseluruhan, kadar penguraian Isolat 17-UPM dalam kultur goncang lebih tinggi hampir sepuluh kali berbanding kultur statik. Ponceau 2R telah diuraikan secara optimum apabila dieram di antara 35 hingga 40°C dalam kultur goncang pada pH awal 6.

Pencerakinan untuk enzim-enzim pengubah lignin yang terlibat dengan penguraian pewarna azo hanya menunjukkan kehadiran lakase (E.C. 1.10.3.2) manakala lignin peroksidase (E.C. 1.11.1.14) dan mangan peroksidase (E.C. 1.11.1.13) tidak dapat dikesan. Terdapat hubungan yang signifikan antara profil aktiviti lakase dalam kultur cecair goncang dan profil degradasi pewarna azo di mana suhu dan pH awal optimum bagi kedua-dua adalah masing-masing 40°C dan pH 6. Penulenan separa lakase yang dihasilkan oleh Isolat 17-UPM semasa degradasi pewarna azo melalui penukar anion DEAE Cellulose dan kolum penurasan gel ZorbaxR GF -250. Enzim separa tulen menunjukkan K_{m (app)} bernilai 0.28 mM, V_{max (app)} bernilai 100 µmol/min.ml, aktiviti suhu optimum pada 40 hingga 50°C dan pH 3.0 hingga 5.0 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) digunakan apabila sebagai substrat. Ia juga mempamerkan kestabilan tinggi pada suhu bilik dan pH 6.0 hingga 7.0. Isolat 17- UPM terus dicirikan pada peringkat molekul melalui penjujukan rantai gen ITS. Rantai ruangan salinan dalaman DNA yang dipencilkan telah dikuatkan melalui PCR menggunakan primer dikenali sebagai primer ITS-1F dan ITS 4. Isolat 17- UPM telah dikenalpasti sebagai Coriolopsis sp. starin aff17. Dalam kajian ini, kulat reput putih mampu menguraikan pewarna azo telah berjaya dipencilkan, dikenalpasti dan dioptimumkan bagi penguraian pewarna, dan penulenan dan pencirian separa enzim yang terlibat.

ACKNOWLEDGEMENTS

Firstly I would like to express my gratitude to Allah for showering me His blessing and consent to make all of this possible. My sincere thanks and wholehearted appreciation to my supervisor Assoc. Prof. Dr. Mohd Yunus Abd Shukor for his invaluable guidance, advice, expertise and motivation throughout my research. My thanks also go to Prof. Dr Mohd Arif Syed for the advice and support on many aspects of this work.

Special thanks to my laboratory mates especially those from lab 204 namely Mohd Haris, Mohd Ezuan, Badrin and Khalizan for being the source of strength, constant sharing of knowledge and advice that will be remembered and more importantly is the friendship we treasure.

Last but not least, I would like to express my warm gratitude to my family especially my mother and father for giving me the strength and unremitting love, not to forget for my lovely wife Dania Aziz for being patient and giving constant encouragement and support throughout the completion of this thesis. I certainly wouldn't be able to achieve what I have today without the unconditional love and support from family and friends. Thank you again. I certify that a Thesis Examination Committee has met on (16th December 2013) to conduct the final examination of Ahmad Afif Abdul Aziz on his thesis entitled Isolation And Enzymatic Studies Of Dye-Degrading White Rot Fungus in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Masters of Science.

Members of the Thesis Examination Committee were as follows:

Nor'Aini bt. Abdul Rahman, PhD

Faculty of Biotechnology and Science Biomolecule Universiti Putra Malaysia (Chairman)

Norhani bt. Abdullah, PhD Professor

Institute of Tropical Agriculture Universiti Putra Malaysia (Internal Examiner)

Phang Lai Yee, PhD

Faculty of Biotechnology and Science Biomolecule Universiti Putra Malaysia (Internal Examiner)

Mahmoud Abdel-Mongy Ahmed Ismail, PhD

Associate Professor Genetic Engineering and Biotechnology Research Institute Minufiya University Egypt (External Examiner)

NORITAH OMAR, PhD

Associate Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 February 2014

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Mohd Yunus Bin Abd Shukor, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Mohd Arif Bin Syed, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

> (**BUJANG BIN KIM HUAT, PhD**) Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duly referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published (in the form of written, printed or in electronic form) including books, journals, modules, proceedings, popular writings, seminar papers, manuscripts, posters, reports, lecture notes, learning modules or any other materials as stated in the Universiti Putra Malaysia (Research) Rules 2012;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	Date:	16 December 2013	
<i>U</i> .			_

Name and Matric No.: <u>AHMAD AFIF ABDUL AZIZ (GS19573)</u>

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under our supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	Signature:
Name of Chairman of Supervisory	Name of Member of Supervisory
Committee: Mohd Yunus Bin Abd Shukor, PhD	Committee: Mohd Arif Bin Syed, PhD

TABLE OF CONTENTS

			Daga
AR	STRACI	,	Page ii
	STRACI STRAK		iv
		EDGEMENTS	vi
API	PROVAI		vii
	CLARA		ix
	T OF TA		xiv
	T OF FI		XV
LIS	I OF AI	BBREVIATIONS	xix
CH	APTER		
1	INTR	ODUCTION	1
2	LITE	RATURE REVIEW	3
	2.1	Azo Dye	3
		2.1.1 Structure and stability of azo dyes	3
	2.2	Environmental effect of azo dye residual	6
		2.2.1 Toxicology and persistence of azo dyes	6
	2.3	Methods of azo dye removal	7
		2.3.1 Physical and chemical method	7
		2.3.2 Biological method	9
	2.4	Bioremediation	9
	2.5	Mycoremediation of azo dyes	10
	2.6	White Rot Fungi	11
	2.7	Laccase characteristics	11
		2.7.1 Optimum pH	12
		2.7.2 Optimum temperature	12
		2.7.3 Laccase stability and substrate specificity	12
	2.8	Application of laccase	14
3	MAT	ERIALS AND METHODS	15
	3.1	General Overview	15
	3.2	Chemicals and Equipments Used	15
	3.3	Isolation and Screening of White-Rot Fungi	15
		3.3.1 White-Rot Fungi Sampling	15
		3.3.2 Cleaning and Disinfection of White-Rot Fungi Samples	16
		3.3.3 Growth and Isolation	16
		3.3.4 Maintenance of White-Rot Fungi Isolates	17 17
		3.3.5 Screening of White-Rot Cultures for Azo Dye Degrading Ability	1 /

	3.3.5.1 Primary Qualitative Screening	18
	3.3.5.2 Secondary Quantitative Screening	18
3.4 Aze	Dye Degradation Studies	
	.1 Effects of Glucose and Ammonium Chloride on Azo	20
	Dye Degradation by Isolate 17-UPM	21
3.4		21
5.7	(Static and Agitated Liquid Cultures)	22
		22
	3.4.2.1 Preparing the Degradation Media for Agitated Cultures	22
3.4		22
3.4	5	22
	Degradation in Agitated Liquid Cultures	22
	3.4.3.1 Effects of Incubation Temperatures on Azo	
	Dye Degradation	23
	3.4.3.2 Effects of Different Degradation Medium pH	
	on Azo Dye Degradation	23
3.5 Enz	zymatic Studies on Azo Dye Degradation	
3.5	.1 Detection of LMEs Produced by Isolate 17-UPM in	23
	Degradation Cultures and the Effects of Different	24
	Growth Conditions on LMEs Activity	
	3.5.1.1 Assay for Laccase Activity	
	3.5.1.2 Assay for Lignin Peroxidase Activity	24
	3.5.1.3 Assay for Manganese Peroxidase Activity	24
3.5	.2 Azo Dye Degradation and LMEs Profile in 1 L	25
	Agitated Degradation Cultures	25
3.5		
	Agitated Cultures for Enzymatic Studies	25
3.5	.4 Partial Purification of Laccase	20
5.5	3.5.4.1 Protein determination	26
	3.5.4.2 Concentration of crude laccase	26
	3.5.4.3 Ion exchange chromatography using DEAE	26
	cellulose	20 27
	3.5.4.4Gel filtration chromatograhy using Zorbax [®]	21
	GF 250	77
2 5	.5 Laccase Characterization Studies	27
5.5		20
	3.5.5.1 Determination of Laccase K_m and V_{max} with	28
	ABTS as the Substrate	28
	3.5.5.2 Effects of Different Temperatures on Laccase	20
	Activity	28
	3.5.5.3 Effects of Different pH on Laccase Activity	• •
	3.5.5.4 Determination of Laccase Temperature	29
	Stability	29
	3.5.5.5 Determination of Laccase pH Stability	
3.6 Iden	tification of Azo Dye-Degrading Fungus	29
3.6	e ;	30
	3.6.1.1 Genomic Extraction	30
	3.6.1.2 Polymerase Chain Reaction (PCR)	30
	3.6.1.3 Purification of the amplified PCR products	30
	3.6.1.4 Phylogenetic analysis	31
3.6	.2 Statistical analysis	31
	-	31

4	RESU	ULTS AND DISCUSSION	33
	4.0	Isolation and screening of white-rot fungi	33
	4.1	White-rot fungi isolated from sites in Peninsular Malaysia	33
	4.2	Screening of white-rot cultures for azo dye degrading ability	34
		4.2.1 Primary Qualitative Screening	
		4.2.2 Secondary Quantitative Screening	34
	4.3	Optimization of Azo Dye Degradation	38
		4.3.1 Effects of Glucose and Ammonium Chloride on Azo	44
		Dye Degradation by Isolate 17-UPM	44
		4.3.2 Effect Of Aeration on Azo Dyes Degradation Profiles	
		(Static and Agitated Liquid Cultures)	46
		4.3.3 Effects Of Different Growth Conditions On Azo Dye	
		Degradation	49
		4.3.3.1 Effects of incubation temperatures on azo dye	
		degradation	49
		4.3.3.2 Effects of different medium initial pH on azo	
		dye degradation	50
	4.4	Enzymatic Studies on Azo Dye Degradation	
		4.4.1 Detection and studies on the effects of growth	52
		conditions on LMEs activity by Isolate 17-UPM in	52
		degradation cultures	
		4.4.1.1 Effects of different incubation temperatures on	
		laccase activity in degradation medium	52
		4.4.1.2 Effects of different degradation medium pH	5 4
		on laccase activity	54
		4.4.2 Azo dye degradation and LMEs profile in 1 L agitated	FF
		degradation cultures	55
		4.4.3 Partial purification of laccase	57
		4.4.3.1 Concentration of crude enzyme	57
		4.4.3.2 Ion exchange chromatography 4.4.3.3 Size exclusion chromatography	57
		4.4.4 Laccase characterization studies	60
		4.4.4.1 Determination of Km and Vmax	60 62
		4.4.4.2 Effects of temperatures on laccase activity	62
		4.4.4.3 Effects of pH on laccase activity	63
		4.4.4 Determination of Laccase Temperature	65
		Stability	67
		4.4.4.5 Determination of Laccase pH Stability	
		4.4.5 ITS Region Analysis	68
		4.4.5.1 Genomic Extraction	70
		4.4.5.2 Polymerase Chain Reaction (PCR)	71
		4.4.5.3 ITS rRNA Gene Sequencing	71
			72
5	CON	CLUSION	75
REF	EREN	CES	76

REFERENCES	
APPENDICES	
BIODATA OF STUDENT	

89 93