

UNIVERSITI PUTRA MALAYSIA

BIOHYDROGEN PRODUCTION DURING GROWTH OF AN INDIGENOUS BACTERIUM, OCHROBACTRUM PUTRANENSIS EB2, IN PALM OIL MILL EFFLUENT

CHEONG WENG CHUNG

FBSB 2006 36

BIOHYDROGEN PRODUCTION DURING GROWTH OF AN INDIGENOUS BACTERIUM, OCHROBACTRUM PUTRANENSIS EB2, IN PALM OIL MILL EFFLUENT

CHEONG WENG CHUNG

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2006

BIOHYDROGEN PRODUCTION DURING GROWTH OF AN INDIGENOUS BACTERIUM, OCHROBACTRUM PUTRANENSIS EB2, IN PALM OIL MILL EFFLUENT

By

CHEONG WENG CHUNG

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Doctor of Philosophy

October 2006

Specially dedicated to,

My beloved parents who brought me to this world, my brothers who gave me the encouragement and laughter, and friends for their invaluable advice and morale support. Sharon, thank you for being understanding throughout my study and loving me.....

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the Degree of Doctor of Philosophy

BIOHYDROGEN PRODUCTION DURING GROWTH OF AN INDIGENOUS BACTERIUM, OCHROBACTRUM PUTRANENSIS EB2, IN PALM OIL MILL EFFLUENT

By

CHEONG WENG CHUNG

October 2006

Chairman: Prof. Mohd. Ali Hassan, PhD

Faculty: Biotechnology and Biomolecular Sciences

The study was on the production of hydrogen from palm oil mill effluent using indigenous bacteria. Three potential bacteria (WL1, EB2, and DT1) were isolated from wetland soil, termite's gut and anaerobic digester tank, respectively. All three isolates were Gram-positive, spore-forming, facultative anaerobe rods and exhibited motility by means of peritrichous flagella. All of the isolates were short straight rods, appeared in-pairs, clumped-together and formed biofilm on the agar surface. Using the 16s rRNA identification method, EB2 belonged to the *Brucellaceae* family and is closely related to *Ochrobactrum sp.*, thus, designated as *Ochrobactrum putranensis* EB2; while WL1 and DT1 isolates were taxonomically positioned as *Bacillus cereus*. These bacteria differed by 30-35% in the 16s rRNA identification method from the existing bacteria recorded in the gene library. Since EB2 is different from other bacteria in the database, it is regarded as a new bacteria. In this study, the EB2 bacteria was used throughout the study to enhance the production of hydrogen.

The study on the optimization of hydrogen production was done on the *Ochrobactrum putranensis* EB2 and the parameters chosen were pH 4, 5 and 6; at

temperatures 30°C, 37°C and 45°C. Comparisons were done with VFA and hydrogen production as well as COD reduction. The *Ochrobactrum putranensis* EB2 was able to grow steadily in POME and produced hydrogen at the pH of 5.5 and temperature 37°C. The highest μ_{max} obtained was 0.384 h⁻¹. An average of 1300 mL of accumulated hydrogen volume was obtained within 72 hours of batch fermentation from 1 L of POME in the optimization study.

Production of hydrogen from palm oil mill effluent (POME) by *Ochrobactrum putranensis* EB2 was investigated in 2.0 L bioreactor with working volume of 1.0 L at 37° C and pH of 5.5 ± 0.3 . The optimized conditions were applied in the hydrogen production study. The average hydrogen volume accumulated in the system was 1100 mL with 58.0% COD removal. Repeated experiments done on the batch fermentation confirmed the reproducibility of the results. Continuous fermentation were started after 72 hours of batch fermentation when there was no hydrogen production.

During continuous fermentation, hydrogen gas production was at 34.2 mL H₂/L per day for HRT 0.5 day, 13.0 mL H₂/L per day for HRT 1.0 day and 12.6 mL H₂/L per day for HRT 1.5 days and these show the HRT-dependent characteristics of hydrogen production. The efficiency of *Ochrobactrum putranensis* EB2 to convert the POME into hydrogen gas was about 31.67 mL H₂/g COD and was the highest recorded in batch fermentation reducing to 8 mL H₂/g COD at the end of the batch fermentation. The highest productivity obtained in the continuous fermentation was 1.07 mol H₂/mol glucose, was good in comparison with those reported earlier, 1.00-2.36 mol H₂/mol glucose. The high productivity was excellent as most of the COD

was converted to gas, based on the theoretical yield of 4 mol- H_2 /mol-glucose. As such, HRT 0.5 day gave the best result compared to other HRT done in the study.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENGHASILAN BIOHIDROGEN SEMASA PERTUMBUHAN BAKTERIA, OCHROBACTRUM PUTRANENSIS EB2, DALAM EFLUEN KILANG SAWIT

Oleh

CHEONG WENG CHUNG

Oktober 2006

Pengerusi: Prof. Mohd. Ali Hassan, PhD

Fakulti: Bioteknologi dan Sains Biomolekul

Kajian ini melibatkan penggunaan bakteria tempatan dalam penghasilan gas hidrogen menggunakan efluen kilang sawit (POME). Tiga bakteria yang berpotensi menghasilkan gas hidrogen, WL1, EB2 dan DT1, telah disaringkan daripada tanah di kawasan paya, perut anai-anai dan tangki anaerobik sistem rawatan efluen kilang sawit. Ketiga-tiganya merupakan bakteria Gram-positif, mempunyai keupayaan membentuk spora, berbentuk rod, fakultatif anaerobik, keupayaan bergerak dengan flagella dan membentuk biofilem di atas permukaan agar. Dengan menggunakan kaedah pengenalpastian 16s rRNA, EB2 digolongkan dalam keluarga *Brucellaceae* dan hampir serupa dengan spesis *Ochrobactrum*. Dengan itu, bakteria itu dinamakan *Ochrobactrum putranensis EB2*. Manakala, WL dan DT1 digolongkan secara taksonomi sebagai *Bacillus cereus*. Ketiga-tiga bakteria adalah berbeza daripada bakteria-bakteria yang dilaporkan dalam kedah 16s rRNA. Disebabkan kelainan bakteria EB2 daripada bakteria yang sedia ada,

ia dianggap sebagai bakteria yang baru untuk dikaji. Dengan itu, *Ochrobactrum putranensis* EB2 digunakan dalam kajian seterusnya.

Penyelidikan untuk mengoptimumkan penghasilan hidrogen dilakukan ke atas *Ochrobactrum putranensis* EB2 dengan menggunakan nilai-nilai parameter (pH 4, 5 and 6; suhu 30°C, 37°C and 45°C). Perbandingan dilakukan dengan penghasilan VFA dan hidrogen bersama penurunan COD dalam media. pH 5.5 dan suhu 37°C merupakan parameter yang optimum untuk penghasilan hidrogen dan *Ochrobactrum putranensis* EB2 dapat membiak di dalam POME. Nilai μ_{max} yang paling tinggi diperolehi dalam kajian ini adalah 0.384 h⁻¹. Secara purata sebanyak 1300 mL gas hidrogen telah dapat dikumpulkan dalam jangkamasa 72 jam selepas fermentasi dengan 1 L POME.

Penghasilan hidrogen daripada efluen kilang sawit (POME) menggunakan *Ochrobactrum putraensis* EB2 dalam 2.0 L bioreactor (1.0 L POME dengan suhu 37°C dan pH 5.5 \pm 0.3) dikaji dengan cara fermentasi sesekelompok. Eksperimen fermentasi sesekelompok dijalankan dengan menggunakan parameter yang optimum untuk penghasilan hydrogen dan didapati tiada perubahan ketara. Sebanyak 1100 mL hidrogen dapat dikumpulkan dan penurunan kepekatan COD 58.0% dicatatkan. Eksperimen yang dibuat berulang kali menunjukkan keputusan yang serupa. Fermentasi selanjar dilakukan selepas 72 jam fermentasi sesekelompok setelah tiada penghasilan hidrogen dikesan.

Semasa fermentasi selanjar, penghasilan gas hidrogen ialah 34.2 mL H₂/L sehari untuk HRT 0.5 hari, 13.0 mL H₂/L sehari untuk HRT 1.0 hari dan 12.6 mL H₂/L sehari untuk HRT 1.5 hari. Ini menunjukkan penghasilan gas hidrogen menggunakan bakteria adalah bergantung kepada faktor HRT. Tahap kecekapan tertinggi dalam fermentasi sesekelompok *Ochrobactrum putranensis* EB2 untuk menukarkan POME kepada gas hidrogen ialah 67 mL H₂/g COD tersingkir, dan menurun kepada 8 mL H₂/g COD di akhir fermentasi dalam fermentasi selanjar. Produktiviti tertinggi ialah 1.07 mol H₂/mol glukos sehari adalah baik berbanding nilai yang dilaporkan oleh penyelidik yang lain pada 1.00-2.36 mol H₂/mol glukos. Produktiviti yang tinggi ini adalah nilai yang menunjukkan kebanyakan COD telah ditukarkan kepada gas. HRT 0.5 hari memberikan nilai yang terbaik berbanding keputusan HRT yang lain dalam kajian ini. HRT 0.5 hari

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to my main supervisor, Prof. Dr. Mohd. Ali Hassan and members of the supervisory committee; Prof. Dr. Mohamed Ismail Abdul Karim, Prof. Vikineswary Sabaratnam, Assoc. Prof. Dr. Suraini Abdul Aziz and Prof. Dr. Yoshihito Shirai for their invaluable advice and support, encouragement and willingness to share their views throughout the project.

I sincerely thank Prof. Dr. Mohd Ali Hassan for giving me the chance to further my study in a doctorate program and also for his immeasurable support, advice and ideas throughout my study.

In addition, I would like to express my appreciation to my labmates and fermentation laboratory staff, Mr. Rosli Aslim, Madam Renuga a/p Panjamurti and Madam Aluyah Marzuki, thank you for your moral support, cooperation and willingness to teach me.

I am grateful to my beloved parents and brothers for their patience, support and encouragement. Acknowledgement is also due to all who were involved directly and indirectly in the completion of this study. Last but not least, to Sharon, thank you for sharing the sweet and sour throughout my studies and for loving me.

I certify that an Examination Committee met on 30th October 2006 to conduct the final examination of Cheong Weng Chung on his Doctor of Philosophy thesis entitled "Biohydrogen Production During Growth Of An Indigenous Bacterium, *Ochrobactrum Putranensis* Eb2, in Palm Oil Mill Effluent" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the examination Committee are follows:

Arbakariya Ariff, PhD

Professor Faculty of Graduate Studies Universiti Putra Malaysia (Chairman)

Mohd Arif Syed, PhD

Professor Faculty of Biotechnology and Molecular Sciences Universiti Putra Malaysia (Internal Examiner)

Fakhrul Razi-Ahmadun, PhD

Assoc Prof, Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Abdul Jalil Abdul Kader, PhD

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia Putra Malaysia (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 22 MARCH 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohd Ali Hassan, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Mohamed Ismail Abdul Karim, PhD

Professor Faculty of Engineering International Islamic University Malaysia (IIUM) (Member)

Suraini Abdul Aziz, PhD

Associate Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

Vikineswary Sabaratnam, PhD

Professor Faculty of Science Universiti Malaya (Member)

Yoshihito Shirai, PhD

Professor Kyushu Institute of Technology (KIT) Kitakyushu, Japan (Member)

AINI DERIS, PhD

Professor / Dean School of Graduate Studies Universiti Putra Malaysia

Date: 12 APRIL 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledge. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

Name : CHEONG WENG CHUNG

Date : 27 FEBRUARY 2007

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF ABBREVIATIONS	xxii

CHAPTER

1	INTR	RODUCTION	1
	1.1	Hydrogen Energy	1
	1.2	Environmental Impact of Palm Oil Industry	1
	1.3	Objectives	3
•			
2		CRATURE REVIEW	4
	2.1	Palm oil	4
	2.2	Palm oil mill effluent (POME)	5
	2.3	I	9
		2.3.1 Mechanism	9
		2.3.2 Interspecies hydrogen transfer	13
		2.3.3 Microbiology	15
	2.4	Hydrogen gas	19
		2.4.1 The properties of hydrogen	20
		2.4.2 Hydrogen pathway	22
	2.5	Bioreactor operation	25
		2.5.1 Rate-limiting processes	25
		2.5.2 pH, acidity and alkalinity	27
		2.5.3 Temperature	28
		2.5.4 Nutrients	30
		2.5.5 Cations	31
		2.5.6 Continuous operation	32
	2.6	Plasmid profile	33
		2.6.1 Polymerase chain reaction (PCR)	33
	2.7	Ochrobactrum	36
	2.8	Biohydrogen: future directions	38
	2.9	Hydrogen economy	41
	2.10	Differences between Bio-Methane and Bio-Hydrogen	42

3	GEN	ERAL N	MATERIALS AND METHODS	44
	3.1	Chem	ical reagents	44
	3.2	Palm o	oil mill effluent (POME)	45
	3.3	Micro	organisms and preparation	46
		3.3.1	Source of samples	46
		3.3.2	Isolation of the hydrogen producing bacteria	46
		3.2.3	Inoculum preparation and maintenance	47
	3.4	Ferme	ntation process using selected bacteria	47
		3.4.1	General study of hydrogen producing bacteria	47
		3.4.2	Hydrogen production using glucose as substrate	50
		3.3.3	Optimization study on POME as main substrate	
			for hydrogen production	51
		3.3.4	Continuous fermentation study	52
	3.4	Analy	tical methods	55
		3.4.1	Organic acids determination	55
		3.4.2	BOD	55
		3.4.3	COD determination	56
		3.4.4	Total solids	57
		3.4.5	Suspended solids (SS)	57
		3.4.6	Total Kjeldahl nitrogen analysis	58
		3.4.7	Ammoniacal nitrogen (AN)	59
		3.4.8	Gas analysis	59

4	ISOI	ISOLATION AND SCREENING OF HYDROGEN			
	PRO	DUCING BACTERIA			
	4.1	Introduction			
	4.2	Materials and methods			

4.1	Introdu	action	62
4.2	Materi	als and methods	63
	4.2.1	POME sludge	63
	4.2.2	Insect's gut	63
	4.2.3	Soil	63
	4.2.4	Bacteria from collection	64
	4.2.5	Heat treatment on the samples	64
	4.2.6	Screening of local strains bacteria	65
	4.2.7	Operation of batch reactor	65
	4.2.8	Analysis of fermentation products	65
	4.2.9	Sequencing of 16S rDNA	66
	4.2.10	Growth profile of best hydrogen	
		producing bacteria	67
	4.2.11	The selection of bacteria strain for further study	69
4.3	Result	s and discussion	70
	4.3.1	Isolation of bacteria from various sources	70
	4.3.2	Durham tube test	78
	4.3.3	Hydrogen production using glucose by	
		selected bacteria containing medium	79
	4.3.4	Hydrogen production using POME by	
		selected bacteria	86
	4.3.5	Hydrogen productivity for different HRT	91

62

	4.3.6	16S rRNA identification of bacteria	
		selected from termite's gut	93
4.4	Concl	usion	96

5	OPTE	MIZAT	TION OF HYDROGEN PRODUCTION USING	
	Ochrobactrum putranensis EB2			97
	5.1	Introd	uction	97
		5.1.1	Kinetics of cell growth in batch culture	99
	5.2	Materi	ials and methods	102
		5.2.1	POME	102
		5.2.2	Analysis of POME	102
		5.2.3	Microorganism	103
		5.2.4	Organic acids and sugar determination	103
		5.2.5	Optimization study on POME as main substrate	
			for hydrogen production	103
		5.2.6	Characteristics of POME	103
	5.3	Result	s and discussion	106
		5.3.1	The growth of the Ochrobactrum putranensis EB2	106
		5.3.2	Effect of pH and temperature on the	
			hydrogen production	109
		5.3.3	Other parameters in batch fermentation	114
		5.3.4	COD removal and BOD yield	116
	5.4	Conclu	usion	118

6	HYD	PROGEN GAS PRODUCTION AND PRODUCTION O	F
	BY-I	PRODUCT BY Ochrobactrum putranensis EB2	120
	6.1	Introduction	120
	6.2	Materials and methods	122
		6.2.1 POME	122
		6.2.2 Characteristics of POME	122
		6.2.3 Microorganism	122
		6.2.4 Organic acids determination	122
		6.2.5 Operation of batch fermentation	123
		6.2.6 Operation of continuous reactor	124
		6.2.7 Hydrogen analysis	125
	6.3	Results	126
		6.3.1 Batch fermentation	126
		6.3.2 Conversion of COD and BOD to organic acids	127
		6.3.3 Continuous fermentation	130
		6.3.4 COD Removal and BOD Conversion	141
	6.4	Discussions	144
	6.5	Conclusions	146

7	SUM	IMARY, CONCLUSION AND SUGGESTION		
	FOR	R FUTURE WORK	148	
	7.1	Summary	148	
	7.2	Conclusion	150	
	7.3	Suggestion for future work	151	
RE	FEREN	CES/BIBLIOGRAPHY	152	

102
170
194
195

LIST OF TABLES

Table	1	Page
2.1	Types of POME Available And Their Chemical Composition	7
2.2	Characteristics of Palm Oil Mill Effluent (POME)	7
2.3	Non-methanogenic bacteria	18
3.1	Characteristics of Palm Oil Mill Effluent (POME)	45
4.1	Results of the screened bacteria on the Nutrient agar (Heat Treatment)	70
4.2	Morphological and biochemical characteristics of isolated hydrogen producing bacteria	77
4.3	H_2 yield and productivity using glucose as substrate with the 4 isolated bacteria	86
4.4	Amount of hydrogen produced from POME at 37°C	90
4.5	Hydrogen yield reported in the literatures (continuous system using glucose)	92
5.1	Comparison of performance and the kinetic parameter values of hydrogen production in batch culture by <i>Ochrobactrum putraensis</i> EB2 using constant pH 4 with different temperatures	107
5.2	Comparison of performance and the kinetic parameter values of hydrogen production in batch culture by <i>Ochrobactrum putraensis EB2</i> using constant pH 5 with different temperatures	107
5.3	Comparison of performance and the kinetic parameter values of hydrogen production in batch culture by <i>Ochrobactrum putraensis EB2</i> using constant pH 6 with different temperatures	107
5.4	COD removal during anaerobic treatment of POME	117
5.5	BOD yield during steady state of anaerobic treatment of POME	117
6.1	Comparison COD removal during anaerobic treatment of POME	129

6.2	Comparison BOD conversion to VFA after anaerobic treatment of POME	129
6.3	Hydrogen yield reported in the literature (continuous system using glucose)	138
6.4	Comparison COD removal during anaerobic treatment of POME	140
6.5	BOD Conversion to VFA in anaerobic treatment of POME	142

LIST OF FIGURES

Figure		Page
2.1	Schematic flow diagram of processing carried out in a palm oil mill	6
2.2	Schematic diagram of anaerobic digestion of organic compounds	10
2.3	Fate of electrons on reduced pyridine nucleotides in many fermentative	15
2.4	Metabolic steps and microbial groups involved in the anaerobic digestion	16
2.5	Representative pathways of fermentative hydrogen evolution	24
3.1	Experimental overview of the bio-hydrogen research	48
3.2	Experimental design of screening process for hydrogen producing bacteria	49
3.3	Experimental design of glucose substrates for Hydrogen production. (Preliminary study)	50
3.4	Experimental design of optimization study using POME as main substrate in Hydrogen production	52
3.5	Experimental design of optimization of HRT for hydrogen production using POME as main substrate	53
3.6	The set-up using POME as substrate for hydrogen production fermentation	54
3.7	The program for hydrogen analysis in gas chromatography	60
4.1	Wet Heat Treatment on POME Sludge	64
4.2	Experimental design of glucose substrates for Hydrogen production. (Preliminary study)	68
4.3	 (A) The DT1 bacterium coating the surface of the plate after 24 hours incubation at 37°C; (B) The DT2 bacterium with tiny colonies beginning to form/joining to each other (less than 3 hours incubation on subsequent streaking) 	71
4.4	The DT1 and DT2 bacteria on microscope view (1000X) shows that rod shape (similarity) with Gram staining	71

4.5	The DT2 bacterium forming film on the agar after 24 hours (First streaking)	72
4.6	The DT2 bacterium forming yellow film on the agar after 36 hours incubation at 37°C (subsequent streaking)	72
4.7	(A) WT1 Bacterium covering the nutrient agar with white film/slime(B) The flowery pattern of WT1 bacterium growth after incubation	73
4.8	Light micrograph (1000X) of WL1	73
4.9	(A) FP1 bacterium on the first streaking formed yellow film(B) FP1 bacterium on second streaking after 2 hours of incubation	74
4.10	Light micrograph of FP1 (1000X)	74
4.11	IG1 bacterium forming white film on nutrient agar	75
4.12	Light micrograph of the IG1 bacteria (1000X)	75
4.13	SEM micrograph of the IG1 bacteria (5000X)	76
4.14	SEM micrograph of the IG1 bacteria (10,000X)	76
4.15	Durham tube test on the 4 bacteria locally isolated	79
4.16	Hydrogen production, total VFA and CDW using isolated DT1 bacteria. Glucose was used as substrate at initial pH 7.0 with 37°C in batch fermentation	80
4.17	Hydrogen production, total VFA and CDW using isolated WT1 bacteria. Glucose was used as substrate at initial pH 7.0 with 37°C in batch fermentation	81
4.18	Hydrogen production, total VFA and CDW using isolated FP1 bacteria. Glucose was used as substrate at initial pH 7.0 with 37°C in batch fermentation	82
4.19	Setup of 250mL bioreactor using glucose for hydrogen production experiment	82
4.20	250mL bioreactor with glucose in the broth	83
4.21	Gas scrubber unit	83
4.22	Gas outlet to inverted 20% NaOH solution	84

4.23	Hydrogen production, total VFA and CDW using isolated IG1 bacteria. Glucose was used as substrate at initial pH 7.0 with 37°C in batch fermentation	85
4.24	COD concentration, hydrogen and methane production in batch fermentation of POME using bacteria isolated from termite's gut (IG1) with temperature 37°C and initial pH 7.0	87
4.25	COD concentration, hydrogen and methane production in batch fermentation of POME using bacteria isolated from wetland's soil (WL1) with temperature 37°C and initial pH 7.0	87
4.26	COD concentration, hydrogen and methane production in batch fermentation of POME using bacteria isolated from anaerobic digester tank (DT1) with temperature 37°C and pH 7.0	88
4.27	 pH profiles throughout the batch fermentation using: (A) bacteria isolated from termite's gut (IG1), (B) bacteria isolated from wetland' soil (WL1), (C) bacteria isolated from anaerobic digester tank (DT1) at initial pH 7.0 and temperature 37°C 	89
4.28	Hydrogen yield based on COD conversion to mol glucose using different HRT (0.5 day, 1.0 day and 1.5 day) with temperature 37°C and initial pH 7.0	92
4.29	Phylogenetic tree of the <i>Ochrobactrum putranensis</i> and its close relatives in family of <i>Ochrobactrum</i> , based on 676 nucleotides in the 16S rRNA sequence	95
5.1	Experimental design of optimization study using POME as main substrate in Hydrogen production	104
5.2	Setup of bioreactor	105
5.3	The Ln X_t/X_o against time graph of Ochrobactrum putraensis EB2	106
5.4	CDW, Ammoniacal Nitrogen and VFA content profiles of batch fermentation using glucose as substrate at pH 5.5 ± 0.3	108
5.5	pH influence (pH 4.0, 5.0 and 6.0) on hydrogen production at 30° C in batch fermentation	109
5.6	pH influence (pH 4.0, 5.0 and 6.0) on hydrogen production at 37°C in batch fermentation	110

5.7	pH influence (pH 4.0, 5.0 and 6.0) on hydrogen production at 45°C in batch fermentation	111
5.8	Total VFA, Total Nitrogen, COD concentration, TS, SS, pH, Ammoniacal Nitrogen and Microbial Count on batch fermentation using POME at 37°C temperature	114
5.9	BOD and COD Profiles On The Batch Fermentation with pH 6.0 and temperature 37°C	116
6.1	Diagram setup of anaerobic continuously stirred tank reactor	125
6.2	Hydrogen production, total VFA and COD concentration using POME as substrate at pH 5.5 with 37°C in batch fermentation prior to continuous fermentation	126
6.3	COD and BOD profiles in batch fermentation with pH 5.5 and temperature $37^{\circ}C$	128
6.4	Hydrogen, COD concentration and VFA concentration in POME fermentation with <i>Ochrobactrum putranensis</i> EB2 using HRT 1.5 day, pH 5.5 and temperature 37°C	131
6.5	Conversion efficiency in the POME fermentation process using <i>Ochrobactrum putranensis</i> EB2 with HRT 1.5 day, pH 5.5 and temperature 37°C	132
6.6	Hydrogen, COD concentration and VFA concentration in POME fermentation with <i>Ochrobactrum putranensis</i> EB2 using HRT 1.0 day, pH 5.5 and temperature 37°C	134
6.7	Conversion efficiency in the POME fermentation process using <i>Ochrobactrum putranensis</i> EB2 with HRT 1.0 day, pH 5.5 and temperature 37°C	135
6.8	Hydrogen, COD concentration and VFA concentration in POME fermentation with <i>Ochrobactrum putranensis</i> EB2 using HRT 0.5 day, pH 5.5 and temperature 37°C	137
6.9	Conversion efficiency in the POME fermentation process using <i>Ochrobactrum putranensis</i> EB2 with HRT 0.5 day, pH 5.5 and temperature 37°C	138
6.10	Hydrogen yield based on COD conversion to mol glucose at different HRT (0.5, 1.0 and 1.5 day) at temperature 37° C and pH 5.5	140
6.11	Gaseous evolved on the top of the working level with whitish slime in the POME	142

6.12 Whitish slime breakdown to tiny particles after fermentation in HRT 0.5 day 143

