

UNIVERSITI PUTRA MALAYSIA

PURIFICATION AND CHARACTERIZATION OF ACETYLCHOLINESTERASE FROM CLARIAS BATRACHUS AND OREOCHROMIS MOSSAMBICA BRAIN TISSUES

NATARAJAN PERUMAL

FBSB 2006 34

PURIFICATION AND CHARACTERIZATION OF ACETYLCHOLINESTERASE FROM *CLARIAS BATRACHUS* AND *OREOCHROMIS MOSSAMBICA* BRAIN TISSUES

By

NATARAJAN PERUMAL

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirement for the Degree of Master of Science

November 2006

"Dedicated to my father, Perumal Sakaravathy and mother, Thanam Perumal- the unconventional scholars, to my siblings, and to the teachers and lecturers who have taught me everything...

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

PURIFICATION AND CHARACTERIZATION OF ACETYLCHOLINESTERASE FROM *CLARIAS BATRACHUS* AND *OREOCHROMIS MOSSAMBICA* BRAIN TISSUES

By

NATARAJAN PERUMAL

November 2006

Chairman : Professor Mohd. Arif Syed, PhD

Faculty : Biotechnology and Biomolecular Sciences

This study reports on the purification and characterization of a soluble AChE (EC 3.1.1.7) from *Clarias batrachus* and *Oreochromis mossambica* brain tissues. The purification protocol involved homogenization, centrifugation, ultrafiltration, application of custom-synthesized affinity chromatography gel (Edrophonium–Sephacryl S-400) and the use of high performance liquid chromatography system (HPLC). The affinity matrix was synthesized by coupling an AChE-specific inhibitor, edrophonium chloride to epoxy-activated Sephacryl S-400 matrix. Soluble AChE from *C. batrachus* and *O. mossambica* were purified 26.4 and 27.9 fold with a specific activity of 59.7×10^3 and 73.1×10^3 U/mg proteins, respectively. The molecular weight of AChE for *C. batrachus* estimated on SuperoseTM gel filtration column under nondenaturing conditions is 311 kDa. Native polyacrylamide gel electrophoresis (Native-PAGE) under non-denaturing conditions showed only one major molecular form of protein for *C. batrachus* with a molecular weight of about 309 kDa, while AChE from *O. mossambica*

could not be purified. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate and beta-mercaptoethanol (SDS-PAGE) gave only one band for C. batrachus with an estimated molecular weight of 74 kDa. Based on the molecular weights obtained for C. batrachus from both SDS-PAGE and Native-PAGE, the purified AChE can be postulated as being a tetramer form linked with disulfide bonds. Acetylcholinesterases purified from brain tissues samples of C. batrachus and partially purified from O. mossambica have been analyzed further on substrate and sensitivity to inhibitors to distinguish from butrylcholinesterase (BuChE). The AChE from C. batrachus and O. mossambica were most active against acetylthiocholine (ATC) and shows less activity against propionylthiocholine (PTC) and butyrylthiocholine (BTC). From a kinetic point of view, the purified AChE from C. batrachus exhibit the Michaelis constants K_m, for ATC, PTC and BTC in the range of 97, 138 and 238 µM and the maximum velocities V_{max} were 347, 64 and 25 µmol/min/mg protein, respectively. Meanwhile, partially purified AChE from O. mossambica exhibit $K_{m(app)}$ for ATC, PTC and BTC in the range of 125, 260 and 600 μ M and $V_{max(app)}$ were 276, 59 and 36 µmol/min/mg protein, respectively. The turnover number (k_{cat}) for purified AChE from C. batrachus with ATC as a substrate was $0.19 \times$ 10^5 min⁻¹. The inhibition constant (k_i) values of eserine, propidium and carbofuran were 0.34, 81 and 0.51 μ M⁻¹min⁻¹ for *C. batrachus* and 0.24, 65 and 0.41 μ M⁻¹min⁻¹ for *O. mossambica*, respectively. This enzyme is apparently an AChE since it hydrolyzes ATC at a higher rate than other substrates, such as BTC and PTC, at pH 7.0 and 25°C, and is inhibited by eserine but not by iso-OMPA.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PENULENAN DAN PENCIRIAN ASETILKOLINESTERASE DARIPADA TISU OTAK CLARIAS BATRACHUS DAN OREOCHROMIS MOSSAMBICA

Oleh

NATARAJAN PERUMAL

November 2006

Pengerusi : Profesor Mohd. Arif Syed. PhD

Fakulti : Bioteknologi dan Sains Biomolekul

Kajian ini melaporkan mengenai penulenan dan pencirian asetilkolinesterase (AChE) larut yang diekstrak daripada tisu otak Clarias batrachus dan mossambica. Asetilkolinesterase telah Oreochromis ditulenkan separa menggunakan homogenisasi, pengemparan, penurasan ultra, cara gel kromatografi keafinan (Edrofonium-Sephacril S-400) yang telah disintesis di dalam makmal, diikuti dengan kromatografi cecair berprestasi tinggi (HPLC). Matrik afiniti disintesis dengan menggandingkan perencat spesifik AChE "edrofonium" klorida kepada matrik Sephacril S-400 teraktif yang epoksi. Asetilkolinesterase terlarut dari C. batrachus dan O. mossambica telah ditulenkan dengan faktor penulenan masing-masing sebanyak 26.4 dan 27.9 kali ganda dan aktiviti spesifik masing-masing sebanyak 60×10^3 and 73×10^3 U/mg protein. Berat molekul asetilkolinesterase dari C. batrachus dianggarkan seberat 310 kDa di dalam keadaan tidak ternyahasli dengan menggunakan kolum SuperoseTM. Elektroforesis gel poliakrilamida (Native-PAGE) di bawah keadaan tidak

ternyahasli telah menunjukkan hanya satu bentuk utama molekul protein bagi C. batrachus dengan berat molekul kira-kira 310 kDa, manakala AChE daripada O. mossambica tidak berjaya ditulenkan. Elektroforesis gel poliakrilamida dengan kehadiran sodium dodesil sulfat dan beta-merkaptoetanol (SDS-PAGE) memberikan hanya satu jalur protein untuk C. batrachus dengan anggaran berat molekul 74 kDa. Berdasarkan berat molekul-berat molekul yang diperolehi daripada C. batrachus bagi kedua-dua SDS-PAGE dan Native-PAGE, AChE yang telah ditulenkan bolehlah dipostulatkan sebagai bentuk tetramer yang dihubungkan oleh ikatan-ikatan disulfida. Asetilkolinesterase yang telah ditulenkan daripada sampel otak C. batrachus dan yang telah ditulenkan separa daripada O. mossambica telah dianalisis selanjutnya menggunakan substrat dan kesensitifan kepada perencat-perencat bagi membezakannya daripada butirilkolinesterase (BuChE). Asetilkolinesterase daripada C. batrachus dan O. mossambica didapati paling aktif terhadap Asetiltiokolin (ATC) dan menunjukkan aktiviti yang rendah terhadap propioniltiokolin (PTC) dan butiriltiokolin (BTC). Secara kinetiknya AChE daripada C. batrachus menunjukkan pekali Michaelis K_m bagi ATC, PTC dan BTC masing-masing dalam julat 97, 138 dan 238 µM dan kelajuan awal maksimum V_{max}, masingmasing 347, 64 dan 25 µmol/min/mg protein. Manakala AChE daripada O. mossambica menunjukkan pekali Michaelis K_{m(app)} bagi ATC, PTC dan BTC masing-masing sebanyak 125, 260 dan 600 µM dan kelajuan maksimum awal V_{max(app)} masing-masing 276, 59 dan 36 µmol/min/mg protein. Nombor pusingan (kcat) bagi AChE yang telah ditulenkan dari C. batrachus dengan ATC sebagai substrat ialah 0.19×10^5 min⁻¹. Nilai pekali perencatan bagi eserine, propidium dan karbofuran ialah masing-masing 0.34, 81 and 0.51 μ M⁻¹min⁻¹ untuk C.

batrachus manakala 0.24, 65 and 0.41 μM⁻¹min⁻¹ bagi *O. mossambica*. Maka jelaslah enzim ini adalah AChE kerana ia telah menghidrolisis ATC pada kadar yang lebih tinggi berbanding dengan lain-lain substrat seperti BTC dan PTC pada pH 7.0 dan suhu 25°C, dan juga ianya direncatkan oleh eserine tetapi bukan oleh iso-OMPA.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deep and sincere gratitude to my main supervisor, Prof. Dr. Mohd. Arif Syed. I could not have imagined having a better advisor for my master, and without his endless advice, brilliantness, perceptiveness and encouragement I would never have finished.

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Mohd Yunus Abd. Shukor. He is not only a great scientist with deep vision but also and most importantly a kind person. His trust and scientific excitement inspired me in the most important moments of making right decisions and I am glad to work with him. My warmest gratitude also goes to Prof. Dr. Nor Aripin Shamaan for his detailed and constructive comments which has provided a good basis for the thesis presentation.

I would also like to express my sincere appreciation to Dr. Johari Ramli who was my advisor during undergraduate studies and continued to work with me to date. I want to thank him for valuable advice and friendly help in working under collaborative project on Acetylcholinesterase enzyme. This research would not have been completed without the help of En. Ismail Omar and En. Khalid Ithnin (Department of Biochemistry), where both have given me the permission to use the equipments and chemicals in their laboratory.

Postgraduates of the Enzymology and Bioremediation Research Group are thanked for numerous stimulating discussions, help with experimental setup and

general advice; in particular I would like to acknowledge the help of Ms. Vanitha Mariappan, Mrs. Azlina, Mr. Shahizal, Mr. Sim Han Koh, Mr. Ariff, Mrs Neni and Tham Lik Gin. Not forgetting my fellow coursemates, Mr. Syukri, Ms. Taznim Begam, Ms. Surini, Mrs. Aine and all my friends for their continued moral support and companionship through thick and thin, thanks.

Finally, I am forever indebted to my parents and to my siblings who gently offer counsel and unconditional support at each turn of the road.

I certify that an Examination Committee met on 1st November 2006 to conduct the final examination of Natarajan Perumal on his Master Of Science thesis entitled "Purification and Characterisation of Acetylcholinesterase from *Clarias batrachus* and *Oreochromis mossambica* Brain Tissues" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows;

Suraini Abd. Aziz, PhD

Associate Professor Faculty Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Johari Ramli, PhD

AssociateProfessor Faculty Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Muhajir Hamid, PhD

Lecturer Faculty Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Internal Examiner)

Hjh Darah Ibrahim, PhD

Professor School of Biological Sciences Universiti Science Malaysia (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 DECEMBER 2006

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows.

Mohd Arif Syed, PhD

Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Chairman)

Mohd. Yunus Abdul Shukor, PhD Lecturer Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia

(Member)

Nor Aripin Shamaan, PhD Professor Faculty of Biotechnology and Biomolecular Sciences Universiti Putra Malaysia (Member)

AINI IDERIS, PhD

Professor/Dean School of Graduate Studies Universiti Putra Malaysia

Date: 16 JANUARY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

NATARAJAN PERUMAL

Date:

TABLE OF CONTENTS

xiii

DE	DICATION	ii
AB	STRACT	iii
AB	STRAK	v
AC	KNOWLEGMENTS	viii
AP	PROVAL	Х
DE	CLARATION	xii
LIS	ST OF TABLES	xvi
LIS	ST OF FIGURES	xvii
LIS	ST OF ABBREVIATIONS	xxi
СН	IAPTER	
1	INTRODUCTION	1
2	LITERATURE REVIEW	3
	2.1 Acetylcholinesterase	3
	2.2 Biochemical and physiological properties of AChE	5
	2.2.1 Physiological properties of AChE	5

INTR	ODUC	ΓΙΟΝ	1
LITE	RATUF	RE REVIEW	3
2.1	Acetyl	cholinesterase	3
2.2	2.2 Biochemical and physiological properties of AChE		
	2.2.1	Physiological properties of AChE	5
	2.2.2	Structure-function of AChE	7
	2.2.3	Relation of AChE to the cholinergic synapse	8
	2.2.4	Catalytic mechanism of AChE	11
2.3	The A	ChE molecule	14
	2.3.1	Molecular weight	14
	2.3.2	Isoenzymes	17
	2.3.3	AChE substrate specificity	18
	2.3.4	Michaelis-Menten constant	18
2.4 Effect of excessive substrate, pH and temperature		of excessive substrate, pH and temperature	
	on AC	hE	22
2.5	Anti-A	cetylcholinesterase	23
	2.5.1	Anti-Acetylcholinesterase mechanism	25
	2.5.2	Biomolecular rate constant ki and inhibition	
		concentration 50% (IC ₅₀)	27
	2.5.3	Eserine as a potent inhibitor to AChE	28
	2.5.4	Organophosphate as an inhibitor to AChE	29
	2.5.5	Carbamate as an inhibitor to AChE	30
	2.5.6	Effects of Carbamate and Organaphosphate	
		pesticides	31
2.6	Biosen	sor	35
	2.6.1	Acetylcholinesterase as biosensor	35
2.7	Acetyl	cholinesterase purification	38
	2.7.1	Affinity chromatography	39
	2.7.2	Gel filtration Chromatography	45
	2.7.3	High performance liquid chromatography (HPLC)	46

2.8	The fishing industry in Malaysia	47
	2.8.1 Freshwater fish	48
MA	TERIALS AND METHODS	52
3.1	Chemicals and equipments	52
3.2	Test organisms	52
3.3	Enzyme assay	54
3.4	Synthesis of edrophonium–Sephacryl S-400	
	Affinity gel	57
	3.4.1 Epoxy (Bisoxirane) activation	57
	3.4.2 Preparation of the affinity matrix	57
	3.4.3 Coupling of ligand (Edrophonium)	
	via epoxy-activated-Sephacryl S-400 gel	58
3.5	Preparation of brain extract	59
3.6	Purification of AChE by affinity	
	chromatography	59
	3.6.1 Preparation of affinity column	59
	3.6.2 Application of brain extract	61
3.7	Purification of AChE by	
	Superose TM Gel Filtration using HPLC	62
3.8	Acetylcholinesterase molecular weight	
	determination	64
	3.8.1 Superose TM gel filtration	64
	3.8.2 Sodium Dodecyl Sulphate polyacrylamide	
	gel electrophoresis (SDS-PAGE)	65
	3.8.3 Non-denaturing polyacrylmide gel	
	electrophoresis (Native-PAGE)	67
	3.8.4 Gel staining	68
3.9	Protein determination	70
3.10	Characterisation of Acetylcholinesterase	70
	3.10.1 Determination of optimum pH for AChE	
	assay	71
	3.10.2 Determination of AChE pH stability	72
	3.10.3 Determination of AChE assay optimum	
	temperature	72
	3.10.4 Determination of AChE storage temperature	
	stability	73
	3.10.5 Effect of AChE substrates	73
	3.10.6 Michaelis-Menten constant	74
	3.10.7 Determination of IC ₅₀	74
	3.10.8 Biomolecular rate constants (k _i)	75
	3.10.9 Effect of heavy metals and pesticides	
	on AChE activity	78

3

4 **RESULTS AND DISCUSSION**

IVE D			
4.1	Purifi	cation of soluble AChE	80
	4.1.1	Affinity chromatography	
		(Edrophonium–Sephacryl S-400 gel)	80
	4.1.2	Purification of soluble AChE from	
		C. batrachus and O. mossambica	80
	4.1.3	Purification parameter	91
	4.1.4	Purification efficiency	93
4.2	Moleo	cular weight determination of AChE	94
	4.2.1	Superose TM gel filtration	94
	4.2.2	Non-denaturing polyacrylamide	
		electrophoresis gel (Native-PAGE)	97
	4.2.3	Sodium Dodecyl Sulphate polyacrylamide	
		gel electrophoresis (SDS-PAGE)	97
	4.2.4	Comparisons between globular and subunit	
		forms of purified AChE	101
4.3	Acetv	cholinesterase substrate inhibition constant	
	(K _{si})		104
4.4	Acetylcholinesterase K _m , V _{max} and K _{cat}		108
4.5	Effect	t of inhibitors	118
	4.5.1	Inhibition concentration 50% (IC ₅₀)	118
	452	Biomolecular rate constants (k_i)	127
46	Effect	t of n H	144
1.0	461	Optimum pH	144
	462	Stability nH	147
47	Effect	t of temperature	150
	471	Ontimum and stability temperature	150
48	Acety	cholinesterase bioassay system as potential	100
1.0	indica	tors of ecotoxicity	155
	4 8 1	Pesticides screening	155
	482	Heavy metal screening	150
	4.0.2	Effect of Carbofuran	167
	т.0.Ј		102

5 CONCLUSIONS	164
REFERENCES	167
APPENDICES	175
BIODATA OF THE AUTHOR	181

LIST OF TABLES

Table	Ι	Page
1	Enzymes diffusion-controlled rate (k_{cat}/K_m) association with substrate.	4
2	Comparison of purification method and characteristic of cholinesterase	15
3	Acetylcholinesterase substrate specificity.	21
4	Effects of anticholinesterase compound.	34
5	Biosensors for the detection of organophosphates and carbamates.	37
6	Purification scheme of soluble AChE enzyme from <i>C. batrachus</i> brain tissues.	81
7	Partial purification scheme of soluble AChE enzyme from <i>O. mossambica</i> brain tissues.	82
8	Summary of estimated molecular weights of purified AChE from <i>C. batrachus</i>	102
9	Kinetics parameters of purified soluble AChE from <i>C. batrachus</i> hydrolyzing various substrates [acetylthiocholine (ATC), propionylthiocholine (PTC) and butyrylthiocholine (BTC)] at pH 8 and 25 °C.	
10	Kinetics parameters of partially purified soluble AChE from <i>O. mossambica</i> hydrolyzing various substrates [acetylthiocholine (ATC), propionylthiocholine (PTC) and butyrylthiocholine (BTC)] at pH 8 and 25 °C.	
11	Biomolecular rate constants (k_i) and IC_{50} values for <i>in vitro</i> inhibition by eserine, Iso-OMPA, propidium and carbofuran from purified AChE (<i>C. batrachus</i>).	119
12	Biomolecular rate constants (k_i) and IC_{50} values for <i>in vitro</i> inhibition by eserine, Iso-OMPA, propidium and carbofuran from partially purified AChE (<i>O. mossambica</i>).	120

LIST OF FIGURES

Figure		Page
1	Quaternary structures of the major oligomeric forms of AChE in vertebrates.	6
2	Structural features of AChE enzyme.	9
3	Cholinergic synapse mechanism.	10
4	AChE catalytic mechanism scheme.	13
5	General inhibition scheme of AChE by propidium.	27
6	Inhibition scheme of AChE by organophosphate pesticides	30
7	General inhibition scheme of AChE by carbamate compounds	31
8	Mechanism of synthesis of Edrophonium–Sephacryl S-400 affinity gel.	41
9	Binding mechanism of Edrophonium ligand and AChE in affinity chromatography gel (Edrophonium-epoxy-activated Sephacryl S-400 gel).	43
10	Fish as used in experiment, A) C. batrachus and B) O. mossambica.	53
11	Mechanism of action of AChE on ATC.	55
12	Diagram of the brain system from C. batrachus.	60
13	Protein profile of <i>C. batrachus</i> brain tissues in a 10% SDS-PAGE.	83
14	Protein profile of <i>O. mossambica</i> brain tissues in a 10% SDS-PAGE.	84
15	Elution profile of partially purified AChE from <i>C. batrachus</i> brain tissues on custom synthesized Edrophonium–Sephacryl S-400 chromatography column	86
16	The elution profile of pooled fractions (<i>C. batrachus</i>) from affinity chromatography on Superose TM gel filtration column before (A) and after (B) purification and rechromatography.	87
17	Elution profile of partially purified AChE from <i>O. mossambica</i> on custom synthesized Edrophonium Sephacryl S-400 chromatography column.	89

18	The elution profile of pooled fractions (<i>O. mossambica</i>) from affinity chromatography on Superose TM gel filtration column before (A) and after (B) purification and rechromatography	90
19	Relationship between the molecular weight of proteins and retention time on Superose TM gel filtration column.	95
20	Molecular weight determination of purified AChE from <i>C</i> . <i>batrachus</i> on Superose TM gel filtration column.	96
21	Non-denaturing polyacrylamide gel electrophoresis (Native-PAGE) of purified AChE from <i>C. batrachus</i> in a 5% polyacrylamide gel	98
22	Non-denaturing polyacrylamide gel electrophoresis (Native-PAGE) of partially purified AChE from <i>O. mossambica</i> in a 5 % polyacrylamide gel.	99
23	Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) of purified AChE from <i>C. batrachus</i> in a 10% polyacrylamide gel under denaturing condition	100
24	Substrates specificity and effect of substrates concentration on the hydrolysis of ATC, PTC and BTC by purified AChE from <i>C. batrachus</i> at 25° C and pH 7.5	105
25	Substrates specificity and effect of substrates concentration on the hydrolysis of ATC, PTC and BTC by partially purified AChE from <i>O. mossambica</i> at 25°C, and pH 7.5.	106
26	Michaelis-Menten curve of ATC, PTC and BTC hydrolyzed by purified AChE from <i>C. batrachus</i> generated by the GraphPad Prism TM software.	109
27	Michaelis-Menten curve of ATC, PTC and BTC hydrolyzed by partially purified AChE from <i>O. mossambica</i> .	110
28	Lineweaver-Burke plot of ATC, PTC and BTC hydrolyzed by purified AChE from <i>C. batrachus</i> .	111
29	Lineweaver-Burke plot of ATC, PTC and BTC hydrolyzed by partially purified AChE from <i>O. mossambica</i> .	112
30	Inhibition concentration 50% (IC ₅₀) curve of purified AChE in the presence of eserine from <i>C. batrachus</i>	121
31	Inhibition concentration 50% (IC ₅₀) curve of purified AChE in the presence of propidium from <i>C. batrachus</i> .	122

32	Inhibition concentration 50% (IC ₅₀) curve of purified AChE in the presence of carbofuran from <i>C. batrachus</i> .	123
33	Inhibition concentration 50% (IC ₅₀) curve of partially purified AChE in the presence of eserine from <i>O. mossambica</i> .	124
34	Inhibition concentration 50% (IC ₅₀) curve of partially purified AChE in the presence of propidium from <i>O. mossambica</i> .	125
35	Inhibition concentration 50% (IC ₅₀) curve of partially purified AChE in the presence of carbofuran from <i>O. mossambica</i> .	126
36	Biomolecular reaction constant (k_i) curve of purified AChE in the presence and absence of eserine from <i>C. batrachus</i> .	128
37	Biomolecular reaction constant (k_i) curve of partially purified AChE in the presence and absence of eserine from <i>O. mossambica</i> .	129
38	Biomolecular reaction constant (k_i) curve of purified AChE in the presence and absence of propidium from <i>C. batrachus</i> .	130
39	Biomolecular reaction constant (k_i) curve of partially purified AChE in the presence and absence of propidium from <i>O. mossambica</i>	131
40	Biomolecular reaction constant (k_i) curve of purified AChE in the presence and absence of carbofuran from <i>C. batrachus</i> .	132
41	Biomolecular reaction constant (k_i) curve of partially purified AChE in the presence and absence of carbofuran from <i>O. mossambica</i> .	133
42	Lineweaver-Burk plots of purified AChE from <i>C. batrachus</i> in the presence and absence of eserine	134
43	Lineweaver-Burk plots of partially purified AChE from <i>O</i> . <i>mossambica</i> in the presence and absence of eserine	135
44	Lineweaver-Burk plots of purified AChE from <i>C. batrachus</i> in the presence and absence of propidium	136
45	Lineweaver-Burk plots of partially purified AChE from <i>O</i> . <i>mossambica</i> in the presence and absence of propidium	137
46	Lineweaver-Burk plots of purified AChE from <i>C. batrachus</i> in the presence and absence of carbofuran	138
47	Lineweaver-Burk plots of partially purified AChE from O.	

	mossambica in the presence and absence of carbofuran	139
48	The effect of pH on purified AChE from <i>C. batrachus</i> at a range of pH from pH 3.5 to 10.	145
49	Effect of pH on partially purified AChE from <i>O. mossambica</i> at a range of pH from pH 3.5 to 10.	146
50	pH stability studies of AChE enzyme from C. batrachus	148
51	pH stability studies of AChE enzyme from O. mossambica	149
52	Effects of assay temperatures on AChE activity with ATC as the substrate (<i>C. batrachus</i>).	151
53	Effects of assay temperatures on AChE activity with ATC as the substrate (<i>O. mossambica</i>).	152
54	Effects of different pre incubation temperatures on AChE stability (<i>C. batrachus</i>).	153
55	Effects of different pre incubation temperatures on AChE stability (<i>O. mossambica</i>).	154
56	Effect of various pesticides on the enzymatic inhibition of partially purified AChE from <i>C. batrachus</i> .	157
57	Effect of various pesticides on the enzymatic inhibition of partially purified AChE from <i>O. mossambica</i>	158
58	Effect of various heavy metals on the enzymatic inhibition of partially purified AChE from <i>C. batrachus</i> .	160
59	Effect of various heavy metals on the enzymatic inhibition of partially purified AChE from <i>O. mossambica</i>	161

LIST OF ABBREVIATIONS

Å	Angstrom
APS	Ammonium persulphate
≤	Lesser then or equal
2	Greater then or equal
ACh	Acetylcholine
AChE	Acetylcholinesterase
AChR	Acetylcholine receptor
ATC	Acetylthiocholine iodine
BTC	Butyrylthiocholine
BuCh	Butyrycholine
BuChE	Butyrylcholinesterase
ChAT	Cholineacetyltransferase
DTNB	5,5'-dithiobis(2-nitrobenzoic acid)
g	gravity (Relative centrifugal force)
HPLC	High performance liquid chromatography
IC ₅₀	50% inhibition concentration
Iso-OMPA	Tetramonoisopropylpyrophosphotetramide
IU	International unit
k _{cat}	Turnover number
kDa	kiloDalton
K _i	Inhibition constant
K _m	Michaelis constant
K _{si}	Substrate inhibition constant

L	Liter
М	Muscarinic receptors
М	Molar
m	Meter
mAU	milliabsorbance unit
mol	Mole
NaOH	Sodium hydroxide
PAGE	Polyacrylamide gel electrophoresis
PAS	Peripheral anionic site
ppb	Parts per billion
ppm	Parts per million
psi	Pounds per square inch
РТС	Propionylcholine
rpm	Revolutions per minute
S.D.	Standard deviation
SDS	Sodium dodecyl sulphate
TEMED	N,N,N',N'-tetramethyl-ethylenediamine
UV	Ultraviolet
V	Volt
vAChT	Vesicular-ACh transporter
V _{max}	Maximum initial velocity

CHAPTER I

INTRODUCTION

"ACETYLCHOLINESTERASE NEVER CEASED TO AMAZED, EXCITE OR CHARM US, with its wide ramifications, unexpected roles, strange forms and complex inhibition," according to Brzin *et al.* (1984). These words described perfectly how important the charm and complexity of Acetylcholinesterase is becoming more powerful as we learn more about it.

Acetylcholinesterase (acetylcholine acetylhydrolase, EC 3.1.1.7; AChE) is a serine hydrolase that serves principally to terminate signal transmission at cholinergic synapses by rapid hydrolysis of the excitatory neurotransmitter acetylcholine in the synaptic gap. In accordance with its biological role, AChE is a very rapid-acting enzyme, operating at nearly diffusion-limited rates. Acetylcholinesterase exhibit genetic and molecular polymorphism and their distributions and physiological roles differ among species (Forget and Bocquene, 1999). As a consequence, the characteristic associated with biochemical and physiological properties is also highly variable.

Investigation of AChE in fish was initiated in 1943, when it was demonstrated that common carp *Cyprinus carpio* brain tissues contains AChE and further investigations have found similar results for other teleost (Silver, 1974). Previous studies also show that the AChE kinetic studies and sensitivity to inhibitor varied among different fish species (Chuiko, 2000). Although there are numerous studies of the properties of fish AChE, they have been mainly conducted for a

limited number of fish species and have been mostly concerned with non local source. Currently, characteristic differences of AChE among fresh water fish species from local source are not well studied.

Most of the studies on AChE have been carried out with relatively crude preparations which contain other esterases with possible overlapping substrate specificities. The use of purified AChE has obvious advantages over crude homogenates in kinetic studies of substrate and inhibitor interactions, especially when other esterases are incapable of hydrolyzing compounds under investigation. Although many different methods have been used for the purification of AChE, affinity chromatography has been demonstrated to be the most effective technique for purification. It usually provides a high yield with an adequate purity of AChE which is particularly desirable in many characteristic and inhibitory studies.

Most studies of AChE enzyme use non-local source. In this work the main aim is to provide fundamental knowledge on AChE from local fish species of *Clarias batrachus* and *Oreochromis mossambica*. This research has been carried out using *C. batrachus* and *O. mossambica* because of their availability, commercial importance and can be locally produced. The objectives of this study are;

- 1. To purify and characterize AChE from the brain tissues of *C*. *batrachus* and *O. mossambica*.
- 2. To evaluate the effectiveness of AChE as an *in vitro* inhibition assay system for pesticides.

