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CONTROLLED ISLANDING STRATEGY FOR POWER SYSTEMS BASED 
ON FLEXIBLE SEMI-SUPERVISED SPECTRAL CLUSTERING 

By 

FARSHAD AZADIAN 

June 2014 

 

Chairman   :    Mohd Amran Mohd Radzi, PhD 
 
Faculty        :    Engineering 

Many blackout occurrences such as those in USA, Canada, and Italy (2003), Brazil 
and Paraguay (2009), and India (2012) are some evidences proving the vulnerability 
of current electrical power systems. Having a preventive plan is necessary to protect 
systems from experiencing blackout. Intentional islanding is a self-healing method 
with the main goal is to prevent the system from cascading outages which lead to 
blackout. Islanding strategy is based on splitting power systems by means of cutting 
lines into several smaller isolated ones called islands, so that the cascading effects 
and disturbances flowing in the grid are stopped. However, without considering 
specific constraints, these islands will not be stable and will collapse soon and even 
the stability of the grid worsens.  

Previous methods can minimize partitioning cutsets (either power imbalance or 
power disruption) while fully satisfying only one constraint (slow coherency). Thus, 
there is a possibility that by not considering other factors during islanding, the final 
suggested islands are not stable enough. The framework proposed in this research is 
capable of handling multiple constraints applied to the system. Furthermore, unlike 
prior spectral clustering methods which are not capable of satisfying a constraint 
partially, here it is possible to define degree of satisfaction. It is a value defined for 
the combined constraint specifying how much satisfied constraints should be. The 
combined constraint is the combination of all constraints built based on preferred 
factors such as slow coherency and minimal power imbalance. Hence, the proposed 
method is called flexible semi-supervised spectral clustering for controlled islanding. 
In this work, slow coherency is chosen as the first and most preferred constraint, so 
that generators are categorized in slowly coherent groups. To generate stable islands, 
minimal load-generation imbalance is computed which results the second constraint. 
As the final step, lines with lower power flow are discovered and chosen to find 
minimum power flow disruption. 
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In order to verify applicability of the proposed framework, it is applied to two IEEE 
test cases: 39-bus and 118-bus. By using this framework containing several 
constraints, it is shown that this method of islanding generates more stable islands by 
causing as few as possible power flow disruption and load shedding. 

The obtained results clearly confirm that the proposed framework is able to find 
several cutsets based on the defined constraints. This new method generates islands 
while considering different factors of power systems simultaneously which is 
expected to lead to the most stable islands, and therefore save systems from 
blackouts. 
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Abstrak tesis yang dikemukakan ke hadapan Senat Universiti Putra Malaysia sebagai 

memenuhi keperluan untuk ijazah Master Sains 

STRATEGI PEMULAUAN TERKAWAL BAGI SISTEM KUASA 
BERDASARKAN KELOMPOK SPEKTRUM SEPARUH FLEKSIBEL 

TERSELIA  

Oleh 

FARSHAD AZADIAN 

Jun 2014 

 

Pengerusi   :    Mohd Amran Mohd Radzi, PhD 
 
Fakulti        :    Kejuruteraan 

Banyakkejadian putus bekalan seperti di Amerika Syarikat, Kanada, dan Itali (2003), 
Brazil dan Paraguay (2009), dan India (2012) adalah beberapa bukti menunjukkan 
kelemahan sistem kuasa elektrik semasa. Memiliki pelan mencegah adalah perlu 
untuk melindungi sistem daripada mengalami putus bekalan. Pemulauandengan niat 
adalah satu kaedah penyembuhan sendiri dengan matlamat utama untuk menghalang 
sistem daripada gangguan melata yang membawa kepada putus bekalan. Strategi 
pemulauan adalah berdasarkan kepada pemisahan sistem kuasa melalui pemotongan 
talian kepada beberapa kawasan lebih kecil,yang dipanggil pulau, supaya kesan 
gangguan melata yang mengalir di dalam grid dihentikan. Walau bagaimanapun, 
tanpa mengambil kira kekangan tertentu, pulau-pulau ini tidak akan stabil dan akan 
runtuh nanti dan juga kestabilan grid akan menjadi lebih teruk. 

Kaedah terdahulu boleh mengurangkan pembahagian set potong (ketidakseimbangan 
kuasa atau gangguan kuasa) sambil memuaskan sepenuhnya hanya salah satu 
kekangan(kejelasan perlahan). Oleh itu, terdapat beberapa kemungkinan bahawa 
dengan tidak mempertimbangkan parameter lain semasa pemulauan, pulau-pulau 
terakhir yang dicadangkan tidak cukup stabil. Rangka kerja yang dicadangkan dalam 
kajian ini mampu mengendalikan pelbagai kekangan yang digunakan untuk sistem 
berkenaan. Tambahan pula, tidak seperti kaedah kelompok spektrum sebelumnya 
yang tidak mampu memuaskan kekangan sebahagiannya, di sini ia boleh 
menetapkan tahap kepuasan kekangan. Ia adalah satu nilai yang ditetapkan bagi 
kekangan tergabung yang menyatakan bagaimana banyak sepatutnya kekangan yang 
memuaskan. Kekangan tergabung tersebut merupakan gabungan semua kekangan 
yang dibina berdasarkan kepada faktor-faktor pilihan seperti kejelasan perlahan dan 
ketidakseimbangan kuasa yang minimum. Oleh itu, kaedah yang dicadangkan 
dipanggil kelompok spektrum separuh fleksibel terselia untuk pemulauan terkawal. 
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Dalam kerja ini, kejelasan perlahan dipilih sebagai kekangan pertama dan yang 
paling penting, supaya penjana dapat dikategorikan dalam beberapa kumpulan 
kejelasan perlahan. Untuk menghasilkan pulau yang stabil, ketidakseimbangan 
beban-penjaanan akan dikira yang menjadikannya kekangan kedua. Sebagai langkah 
terakhir, talian dengan aliran kuasa yang lebih rendah diselidiki dan dipilih untuk 
mencari ganguan aliran kuasa yang minimum. 

Untuk mengesahkanrangka kerja yang dicadangkan dapat digunakan, ia 
dilaksanakan dalam dua kes ujian IEEE: 39-bas dan 118-bas. Dengan menggunakan 
rangka kerja ini yang mengandungi beberapa kekangan, ia menunjukkan bahawa 
kaedah pemulauan ini menghasilkanpulau yang lebih stabil sambil menyebabkan 
kemungkinan gangguan kuasa dan tumpahan beban sekurang mungkin. 

Keputusan yang diperolehi dengan jelas mengesahkan bahawa rangka kerja yang 
dicadangkan mampu untuk mencari beberapa set potong berdasarkan kekangan yang 
ditakrifkan dan tahap kepentingannya. Kaedah baru ini menjana pulau-pulau sambil 
mempertimbang ciri-ciri yang berbeza pada sistem kuasa dalam masa yang sama 
yang dijangka membawa kepada pulau-pulau yang paling stabil, dan oleh yang 
demikian melindungi sistem daripada putus bekalan.  
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CHAPTER 1 

1 INTRODUCTION 

1.1 Background 

Rapid population growth and industrial development have caused a steep growth in 
energy demand. The main share of this need is provided in the form of electrical 
energy. To satisfy this increasing demand, power systems have to be merged and 
united together in order to form larger interconnected network of lines connecting 
loads and generators to each other [1]. 

Although electrical energy is supplied more efficiently in this type of network, its 
construction, operation and maintenance are excessively intricate and several 
parameters should be analyzed in order to control and guarantee its performance. 
Having acceptable performance in steady-state mode is necessary. However, it is 
essential for power systems to withstand sudden and unpredicted disturbances such 
as loss of some major lines, loads or generations which can completely change their 
power flow pattern. Power security is one of the major abilities of a network. It is 
defined as the ability of an electrical system to survive through sudden disturbances 
and catastrophic outages [2].  

In the near future, there will be several factors that affect maintenance and control 
procedure of power systems. Distributed generation as a new form of power 
generation, advent of new electrical vehicles (undoubtedly future transportation will 
be based on electricity), and other cutting edge technologies make the control and 
maintenance procedure even more difficult. Thus, power systems are more 
vulnerable and of course recent blackouts (which are listed in detail later in 
Table  2.1) have proved that current power systems are not ready yet for the future 
demands. Specially, the blackout in U.S. and Canada in year 2003 was an eye-
opening experience. Afterwards, numerous studies focused on blackouts to find their 
reasons, behaviors, and processes. 

Generally, security concept can be divided into two main categories [2], [3]: 

1- Preventive strategies: network switching, reactive compensation, and 
generation rescheduling. 

2- Emergency control strategies: direct or indirect load shedding, generation 
shedding, and controlled islanding (network splitting). 

Most power systems only rely on preventive strategies for their security. A 
comprehensive survey covering 111 different Special Protection Schemes (SPSs) in 
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17 countries, revealed that only 6.3% are controlled islanding schemes [4]. 
Furthermore, most of those schemes are predefined based on off-line study and do 
not represent real-time system states and operating conditions. Hence, there is a high 
possibility that they will not be effective enough to prevent blackouts. This 
investigation proved the urgent need to design and implement proper islanding 
strategies for power systems.  

1.2 Problem statement  

Islanding strategy is the last step to prevent a widespread blackout. In this strategy, 
the disturbed large-scale power system is forced to be split into relatively smaller 
isolated systems called islands. With a proper islanding method, not only all possible 
power is supplied for loads and major blackout is prevented, but also disturbances 
and their impacts are  blocked from propagate into the rest of the power network. 
Thus, saving the power system and then having an appropriate restorative plan are 
totally depending on effectiveness of the islanding strategy applied to the system. 

To form stable islands, the islanding strategy must consider several factors such as 
coherency of generators, load-generation balance, thermal limits, transient stability 
and power flow pattern of the system and so forth. It would be too intricate to search 
for islands in large-scale power systems and satisfying all those constraints. It is 
considered as a Non-deterministic Polynomial time (NP) hard problem. It is not even 
possible to anticipate whether such solutions exist. However, by considering only a 
sub-set of those factors, for example slow coherency and load-generation balance, 
now it is feasible to find proper islanding solutions by using heuristic methods. This 
approximation makes it possible to find islanding solutions in reasonable time. 

In terms of objective functions, existing methods can be classified in two groups; 
considering either minimal power imbalance or minimal power-flow disruption.  The 
first group tries to minimize the difference between load and generations in each 
island. While the second group, tries to minimize the implication of islanding on 
power flow pattern of the system. Moreover, it is observed that after disturbances, 
coordination between generators will be changed and some of them tend to swing 
together. Neglecting this phenomenon will result in unstable islands with non-
coherent generators within them which will collapse soon. Therefore, it is crucial to 
consider the coherency between generators in each island. 

One group of islanding methods are to find proper islands based only on either 
minimal power imbalance [5]–[7] or minimal power flow disruption [8], [9] without 
considering slow coherency. Since slow coherency of generators is not considered in 
these works, their final islands may contain non-coherent group of generators which 
is not desirable. Some heuristic methods are proposed to improve final answers by 
creating islands based on either minimal power imbalance [10]–[17], or minimal 
power flow disruption [18], [19] while considering slow coherency as the only 
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constraint. Although the final solutions are more stable in these attempts, obviously 
several important constraints are still left unsatisfied. The first group does not 
consider the power flow pattern of the system during their search for proper islands. 
Therefore, the islanding process itself (due to quick change of flow pattern) can 
cause significant disruption in the system and leads to islands collapse. The second 
group neglects load-generation imbalance in each island which may results in islands 
collapse due to overloading, and unnecessary generation trimming or load shedding. 
Unfortunately, since it is not possible to define more than one constraint in those 
works, they cannot be developed any further. Obviously, it is necessary to propose a 
new method with the ability of handling several constraints to solve the problem. 
Moreover, the previous works are not able to define all types of constraints or 
control them. Finally, it is necessary to prepare a flexible islanding method so that 
final solutions can be regulated and systemized due to situation and conditions of the 
system.  

1.3 Aims and objectives 

The aim of this work is to propose an islanding framework which is capable of 
saving power systems from widespread blackout. In order to achieve this aim, the 
specific objectives are listed as follow: 

1- To develop a framework for controlled islanding which can consider more 
than one constraint simultaneously while generating islands. Furthermore, 
this framework should be capable of handling both types of constraints 
namely full and partial constraints.  

2- To develop a flexible islanding framework in which it is possible to define 
degree of satisfaction for constraints and find the splitting points based on 
them. 

3- To prove the applicability and effectiveness of this new framework by 
applying it to IEEE 39-bus and IEEE 118-bus test cases. 

1.4 Scope of work  

This thesis is concerned with the preparation of a flexible multi-constraint method 
for controlled. To have a successful islanding strategy, three main problems should 
be solved. Those are: 

1. Finding the appropriate time to initiate islanding. 
2. Determining the best splitting points. 
3. Suggesting a proper method to restore the system (also known as “black 

start”) after stabilizing the system. 
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In this thesis, it is intended to cope with the second issue. The other two issues are 
not in the scope of this thesis. 

In order to find proper splitting points, slow coherency, minimal load-generation 
imbalance, and minimal power flow disruption are critical factors that should be 
considered to have a promising islanding. The scope of this work is to suggest a 
flexible multi-constraint framework for controlled islanding to consider all those 
parameters when determine boundaries of the created islands. In this work, it is 
discussed how a constraint should be defined, the proper method for creation 
combined constraint matrix, and how to provide a new method for controlled 
islanding based on flexible semi-supervised spectral clustering [20]. In this work, 
slow coherency and minimal load-generation imbalance (minimal power imbalance) 
are defined as constraints and the combined constraint is constructed based on them. 
Finally, minimal power flow disruption is computed as the objective function. The 
framework proposed here is completely independent of constraints’ types, numbers, 
and methods used to compute them. Thus, methods which are used to compute those 
factors are not in the scope of this work. In this research, it is not intended to go deep 
in those methods or try to improve them for instance to make them faster or more 
precise.  Methods used in this work are only suggestions and comparing them to 
other methods or prove their efficiency is not in the scope of this work. Finally, this 
research has no intention to judge about the importance of those factors. The 
flexibility of this method provides this option to have more than one result according 
to the users’ preferences. 

1.5 Thesis organization  

A brief introduction has been presented in chapter 1. The remainder of this thesis is 
organized as explained further. 

The literature review begins with introducing blackouts, reasons and process of 
blackouts, and history of major previous ones. Then, a brief discussion is brought 
about three closely related concepts in power systems namely power system security, 
power system stability, and power system reliability. After that, the controlled 
islanding is discussed thoroughly and important aspects of it are presented. 
Furthermore, previous methods of controlled islanding are reviewed. Since, the 
proposed method is based on graph theory and spectral clustering; these two fields 
are introduced and discussed in literature review. The background of spectral 
clustering and its development to constrained spectral clustering is reviewed. Lastly, 
flexible semi-supervised spectral clustering used in this research is introduced. 

Chapter 3 describes application of the flexible semi-supervised spectral clustering in 
controlled islanding. The generator grouping based on slow coherency is utilized to 
obtain coherent groups. The procedure to define the result of each step as a 
constraint for future steps is demonstrated subsequently. Breadth First Search (BFS) 
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algorithm is used to find the best boundaries for islands according to minimal power 
imbalance criterion which is the second constraint. To apply all constraints to the 
islanding process, a new method is defined which converts all of them into one 
combined constraint to be used in islanding. Lastly, based on power flow equations 
in power systems, while satisfying constraints; minimum power flow cutset is 
obtained. 

The test cases for efficiency evaluation of this framework are presented in chapter 4. 
Two different IEEE test cases namely 39-bus and 118-bus are used to demonstrate 
the procedure of this strategy and to prove its efficiency in different conditions and 
scenarios. 

Finally, chapter 5 provides the concluding remarks and proposed future works. 
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1.6 Summary 

In this chapter, the concept of power systems security was briefly described and 
controlled islanding strategy and its importance to prevent cascading outages and 
widespread blackouts were reviewed. After presenting an overview of previous 
works, objectives and scope of this research work were declared and classified. At 
last, the layout of this thesis was described for each chapter. 
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