

UNIVERSITI PUTRA MALAYSIA

NUTRIENT REMOVAL USING COMMON REED (*PHRAGMITES KARKA*) AND TUBE SEDGE (*LEPIRONIA ARTICULATA*) IN A CONSTRUCTED SURFACE FLOW WETLAND SYSTEM IN PUTRAJAYA, MALAYSIA

SIM CHENG HUA

FPAS 2007 5

NUTRIENT REMOVAL USING COMMON REED (PHRAGMITES KARKA) AND TUBE SEDGE (LEPIRONIA ARTICULATA) IN A CONSTRUCTED SURFACE FLOW WETLAND SYSTEM IN PUTRAJAYA, MALAYSIA

SIM CHENG HUA

DOCTOR OF PHILOSOPHY UNIVERSITI PUTRA MALAYSIA

2007

NUTRIENT REMOVAL USING COMMON REED (*PHRAGMITES KARKA*) AND TUBE SEDGE (*LEPIRONIA ARTICULATA*) IN A CONSTRUCTED SURFACE FLOW WETLAND SYSTEM IN PUTRAJAYA, MALAYSIA

By

SIM CHENG HUA

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

March 2007

DEDICATION

To my dearest husband, David Li Zuowei who has provided invaluable assistance in the field and support throughout this period. Also to all my family members and friends for their encouragement and support.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

NUTRIENT REMOVAL USING COMMON REED (*PHRAGMITES KARKA*) AND TUBE SEDGE (*LEPIRONIA ARTICULATA*) IN A CONSTRUCTED SURFACE FLOW WETLAND SYSTEM IN PUTRAJAYA, MALAYSIA

By

SIM CHENG HUA

March 2007

Chairman: Associate Professor Mohd Kamil Yusoff, PhD

Faculty: Environmental Studies

A pilot tank study was carried out to determine the nutrient removal efficiency of the common reed *Phragmites karka* and tube sedge *Lepironia articulata*. The replicate planted tanks were continuously fed with a nutrient solution at a rate of 50.0 mg Γ^1 N and 5.0 mg Γ^1 P and control planted tanks were set up without nutrient supplements. The plant growth rate, plant nutrient removal efficiency and nutrient content in the substrate were analysed. In addition, a field study at the 3 wetland cells Upper North 4-6 in Putrajaya Wetlands was carried out to assess the plant nutrient removal efficiency and the substrate were analysed.

In the pilot study, the growth rate and total harvested biomass of treated wetland plants were significantly higher than of those in the control tanks. The treated samples of the common reed experienced a long growth period before they experienced senescence. However no flowering stage was observed throughout the 30-week experimental period.

The treated tube sedge stands collapsed after 8 weeks in the first experimental period, probably due to nutrient overload conditions. In the second experimental period, the plant collapsed after 16 weeks under half nutrient concentration.

Nutrient removal through nutrient accumulation by the common reed was higher than those in tube sedge at 42.12% N; 28.92% P and 17.43% N; 26.08% P respectively, and the differences were significant.

The field study in Putrajaya Wetlands showed that water quality normally improved with flow length along the wetland cells. However the improvement is reduced during periods of rainfall where levels of Total Suspended Solids, Nitrate and Phosphate were highly variable. Nutrient removal performance was 82.11% Total Nitrogen (70.74% Nitrate-Nitrogen); and 84.32% Phosphate from UN 6 to UN 1 (2025 m) from April to December 2004.

Both the pilot and field studies indicated that these two selected wetland plants grew well in the field and in the pilot tank study. Thus, both plant species are good examples of emergent plant species for constructed wetlands.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENYINGKIRAN NUTRIEN DENGAN RUMPUT GEDABONG (*PHRAGMITES KARKA*) AND RUMPUT KERCUT (*LEPIRONIA ARTICULATA*) DALAM SATU SISTEM WETLAND BUATAN JENIS ALIRAN PERMUKAAN DI PUTRAJAYA, MALAYSIA

Oleh

SIM CHENG HUA

Mac 2007

Pengerusi: Profesor Madya Mohd Kamil Yusoff, PhD

Fakulti: Pengajian Alam Sekitar

Satu kajian tangki perintis telah dijalankan bagi menentukan kecekapan rumput gedabong *Phragmites karka* dan rumput purun / kercut *Lepironia articulata* dalam penyingkiran nutrien. Tangki rawatan yang ditanam dengan tumbuhan disalurkan larutan nutrien secara berterusan pada kadar 50.0 mg 1⁻¹ N and 5.0 mg 1⁻¹ P manakala tangki kawalan yang juga ditanam dengan tumbuhan tidak dibekalkan nutrien. Kadar tumbesaran tumbuhan, kadar kecekapan penyingkiran nutrien tumbuhan dan kandungan nutrien dalam substrat dianalisa. Tambahan lagi, satu kajian lapangan telah dijalankan di 3 sel wetland Upper North 4-6 di Wetland Putrajaya untuk menentukan kadar penyingkiran nutrien oleh tumbuhan ini dan peningkatan kadar penyingkiran di sepanjang 3 sel wetland ini.

Dalam kajian perintis, kadar pertumbuhan dan jumlah biomasa tumbuhan yang dirawat adalah lebih tinggi daripada sampel kawalan. Sampel rumput gedabong yang dirawat mengalami tempoh tumbesaran yang panjang sebelum mengalami kelayuan (senesense), tetapi, ia tidak berbunga di sepanjang tempoh eksperimen 30 minggu. Sampel rumput kercut dalam tangki rawatan tumbang selepas 8 minggu dalam tempoh eksperimen yang pertama, mungkin disebabkan oleh kandungan nutrien yang terlampau tinggi. Dalam eksperimen yang kedua, tumbuhan tumbang selepas 16 minggu dalam kepekatan nutrien separuh.

Kadar penyingkiran nutrien melalui pengambilan tumbuhan oleh rumput gedabong adalah lebih tinggi daripada yang dicapai oleh rumput kercut pada 42.12% N; 28.92% P dan 17.43% N; 26.08% P masing-masing, dan perbezaan adalah bererti.

Keputusan kajian lapangan di Wetland Putrajaya menunjukkan kualiti air bertambah baik apabila mengalir melalui satu jarak sepanjang sel-sel wetland. Walaubagaimanapun, kualiti air merosot semasa tempoh hujan dimana paras-paras Partikel Terapung, Nitrat dan Fosforus banyak berubah. Kadar penyingkiran nutrien adalah dalam 82.11% Jumlah Nitrogen (70.74% Nitrat-Nitrogen); dan 84.32% Fosforus dari sel-sel wetland UN 6 hingga UN 1 (2025 m) dari April hingga Disember 2004.

Kedua-dua kajian perintis dan lapangan membuktikan bahawa kedua-dua jenis tumbuhan yang terpilih dapat tumbuh dengan baik di lapangan dan tangki rawatan.

vi

Maka, kedua-dua spesies adalah contoh tumbuhan emergen yang sesuai untuk wetland buatan.

ACKNOWLEDGEMENTS

The author would like to convey her deepest thanks to the supervisory committee, Associate Professor Dr. Mohd Kamil Yusoff of University Putra Malaysia; Professor Brian Shutes of Middlesex University, United Kingdom; Professor Mashhor Mansor and Professor Dick Ho Sinn Chye of University Science Malaysia for their kind guidance and advice.

The author is also very grateful to Perbadanan Putrajaya for their kind permission to work in the wetland; to Dr. Sundari Ramakrishna, Director of Wetlands International-Malaysia for her moral support and encouragement, and to Ford Motor Company Malaysia Conservation and Environmental Grants 2001; as well as University Putra Malaysia Fundamental Research Grants 2002 for providing the financial support that made this research project possible.

Besides that, the author is further thankful to all the following who have provided their kind advice and assistance in the course of her research:

Staff of Perbadanan Putrajaya especially to En. Akashah Hj. Majizat, En. Mohammad Feizal Daud and Cik Normaliza Noordin. Staff of KLCC Urusharta in providing information on Putrajaya Wetlands, especially to En. Saharani Jaafar and En. Ramzi Abu.

Dr. Lim Weng Hee, Dr. Tay Tian Hock and Mr. Kho Boon Lian of Mesra Hijau Sdn Bhd in chemical formulation of the nutrient solution. Professor Lim Poh Eng of University Science Malaysia and Associate Professor Dr. Zelina Z. Ibrahim of University Putra Malaysia for their kind advice in experimental design. Ms. Mohala Santharamohana in language editing.

Mr. Rashid and Mr. Zamarrudin in analysis and laboratory assistance. Lab-mates Nur Aina Khairuddin, Jasrul Nizam Jahaya and Dr. Roslan for their persistent encouragement. Najmina bt Mohd Isa for her 2 month assistance in laboratory analysis as part of her undergraduate research project. Mr. Goh Kong Wah in the setting up of tank experiments.

Professor Mokhtarudin, Dr. Che Fauziah, Puan Fauziah, Puan Norasimah of Soil Science Department in providing guidance and services in soil and plant tissue analysis.

I certify that an Examination Committee has met on 23 March 2007 to conduct the final examination of Sim Cheng Hua on her Doctor of Philosophy thesis entitled "Nutrient Removal Using Common Reed (*Phragmites karka*) and Tube Sedge (*Lepironia articulata*) in a Constructed Surface Flow Wetland System in Putrajaya, Malaysia" in accordance with Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Ahmad Makmom Hj. Abdullah, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Fatimah Md Yusoff, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mohamad Ismail Yaziz, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Internal Examiner)

Datin Hj. Ann Anton, PhD

Professor School of Science and Technology Universiti Malaysia Sabah (External Examiner)

HASANAH MOHD. GHAZALI, PhD

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 JUNE 2007

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee are as follows:

Mohd Kamil Yusoff, PhD

Associate Professor Faculty of Environmental Studies Universiti Putra Malaysia (Chairman)

Ho Sinn Chye, PhD

Professor School of Biological Sciences Universiti Sains Malaysia (Member)

Mashhor Mansor, PhD

Professor School of Biological Sciences Universiti Sains Malaysia (Member)

Brian Shutes, PhD

Professor Biomedical and Environmental Sciences Middlesex University, United Kingdom (Member)

AINI IDERIS, PhD

Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date: 17 JULY 2007

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

SIM CHENG HUA

Date: 17 MAY 2007

TABLE OF CONTENTS

Page

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	viii
APPROVAL	Х
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xxii
LIST OF ABBREVIATIONS	xxix

CHAPTER

1

2

INT	RODUCTION	1
1.1	Introduction	1
1.2	Objectives	4
1.3	Hypotheses of research	5
LIT	ERATURE REVIEW	7
2.1	Introduction to the use of constructed wetland systems	7
2.2	History of constructed wetland treatment systems	9
2.3	The use of constructed treatment wetlands in Malaysia	15
2.4	e	16
2.5	treatment systems Types and wise use of constructed wetland treatment	18
2.0	systems	10
	2.5.1 Surface flow wetland systems	22
	2.5.2 Sub-surface flow wetland systems	23
	2.5.3 Vertical flow wetland systems	24
2.6	Selection of wetland plants	26
	2.6.1 Floating and submerged aquatic plant system	26
	2.6.2 Microalage	28
	2.6.3 Emergent wetland plant system	28
	2.6.4 Emergent woody shrub and tree species	30
	2.6.5 Comparison of emergent wetland plant system	30
	and aquatic plant system	
	2.6.6 Selection criteria of emergent wetland plant	32
	species	
2.7	The use of wetland plants in constructed treatment	38
	wetlands	
	2.7.1 Physical role in sedimentation and bed	40
	stabilistion	

	2.7.2	Plant surface for microbial attachment and	40
	272	growth	41
	2.1.5	Hollow plant tissue for oxygen transfer and soil aeration	41
	2.7.4	Aesthetic values	42
2.8		and principles of constructed wetland systems	43
2.0	-	Substrate types	44
		Area size and aspect ratio	45
		Nature, loading and distribution of wastewater	46
		Retention time	47
2.9	Constru	ucted wetland treatment mechanisms	47
	2.9.1	Nitrogen removal mechanisms	49
		Phosphorus removal mechanisms	52
		Nutrient accumulation by wetland plants	54
	2.9.4	Sediment accretion	57
	2.9.5	Metal removal	57
	2.9.6	Pathogen removal	58
		Other pollutant removal mechanisms	59
2.10) Constr	ructed wetland treatment performance	61
2.11	Impor	tance of wetland management	63
2.12	-	arative studies	63
2.13	Introd	uction to Putrajaya Wetlands	64
	2.13.1	Putrajaya lake and wetland cells	64
	2.13.2	Wetland plants at Putrajaya Wetlands	69
	2.13.3	Putrajaya lake water quality standard	70
MA	TERIAL	LS AND METHODS	72
3.1	Pilot ta	ink study	72
	3.1.1	Set up of experimental tanks	72
	3.1.2	Experimental design	73
	3.1.3	Nutrient solution preparation	79
	3.1.4	Wetland plants used in this pilot study	84
	3.1.5	Determination of Nitrate, Nitrite and	87
		Ammoniacal-Nitrogen, Reactive Phosphate	
		and COD from water samples	
	3.1.6	Determination of nutrient content in plant	90
		biomass	
	3.1.7		92
		samples	
3.2		tudy at Putrajaya Wetlands	94
	3.2.1	5	94
	3.2.2		95
	3.2.3	i e	100
	3.2.4		100
	3.2.5	Water quality laboratory analysis method	101

3

		3.2.6	1	104
			substrate samples	105
		3.2.7	e	105
		3.2.8	1	105
		3.2.9	Plant growth monitoring in the field	105
4	PIL	OT EXP	ERIMENTAL STUDY	106
	4.1	-	nental Results	106
			Common reed	106
		4.1.2	Tube sedge	126
		4.1.3	Comparison between the common reed and tube sedge	137
		4.1.4	υ	162
		4.1.5	• -	177
		4.1.6	6 1	179
		4.1.7	Plant growth monitoring	189
	4.2	Impact results	of rainfall and evaporation on experimental	194
		4.2.1	Impact of rainfall on nutrient removal from	194
		4.2.1	water samples	-
		4.2.2	Impact of evaporation on nutrient removal from water samples	196
		4.2.3	Impact of evapotranspiration on nutrient removal	198
	4.3	Overall	nutrient removal performance of pilot tank	200
		system		
5	FIE	LD STUI	DY AT PUTRAJAYA WETLANDS	202
	5.1	Water o	juality analysis	202
		-	<i>In-situ</i> water quality results	202
		5.1.2	Laboratory analysis results	210
		5.1.3	Water quality improvement from UN 6 to UN 4	218
		5.1.4	Impact of rainfall on water quality parameters	222
		5.1.5	Impact of inflow from side banks of wetland cells	231
	5.2		nt and turbidity removal performance along	240
		wetland		240
			Nutrient removal along wetland cells	240
	5.2		Turbidity removal along wetland cells	252
	5.3	Impact Cells	of rainfall on nutrient removal along wetland	252
	5.4	Improvo Ratio	ement of nutrient removal along a higher aspect	256
	5.5		t retention in substrate samples in wetland cells	257
	5.6		t accumulation by wetland plants in wetland cells	258
	5.7		rowth monitoring in the field	260

	5.8	Plant su	ccession and siltation in the wetland cells	262
	5.9	Nutrient	t pollution control and algae bloom	266
6			ON AND IMPLICATIONS OF PILOT TANK STUDY RESULTS	269
	6.1	Plant gro		269
	6.2	U	accumulation by wetland plants	270
		6.2.1	Comparison between pilot tank study and field study	270
		6.2.2	Comparison with other field study in Putrajaya Wetlands	272
	6.3	Nutrient	accumulation in substrate samples	274
		6.3.1	Comparison between pilot tank study and field Study	274
		6.3.2	Comparison with other field study in Putrajaya Wetlands	275
	6.4	Wetland	nutrient removal efficiency	276
		6.4.1	Comparison of nutrient removal in the pilot and field study	276
		6.4.2	Rainfall impact on the nutrient removal in the pilot and field study	277
	6.5	Selectio	n of wetland plants for treatment wetlands	278
7	DIS	CUSSION	N	281
8	CO	NCLUSIC	DN	286
REFERENCES APPENDICES BIODATA OF THE AUTHOR				288 306 336

LIST OF TABLES

Tał	ble	Page
1	Hydroperiod tolerance ranges for emergent wetland plant species in wetland treatment systems	34
2	Process design criteria of surface flow wetlands	43
3	A list of pollutant removal processes in a constructed wetland treatment system	60
4	List of emergent wetland plants used in Putrajaya Wetlands	70
5	Experimental design for common reed and tube sedge treatment and control tanks	80
6	HACH methods for water quality analysis in the laboratory	88
7	Location of sampling stations at Upper North wetland cells	97
8	Experimental design for field studies in Putrajaya Wetlands	100
9	List of equipment used for <i>in-situ</i> water quality parameter measurements	101
10	Growth of the common reed plant samples in treatment and control tanks	109
11	Fresh biomass per plant, total fresh biomass and above-ground biomass/below-ground biomass ratio in treatment and control tanks of the common reed	115
12	Water content in plant stock of common reed plant samples	117
13	Estimation of dry plant biomass of the common reed	118
14	Nutrient removal efficiency of the common reed in the treatment tanks	122
15	Nutrient removal changes in the common reed treatment tanks within a 2- week experimental period	122
16	Nutrient retention in plant biomass of common reed in treatment and control tanks	124
17	Nutrient content in plant stock and treated plant samples of the common reed	125
18	Growth of the tube sedge plant samples in treatment and control tanks	127

19	Fresh biomass per plant, total fresh biomass and above-ground biomass / below-ground biomass ratio in treatment and control tanks of the tube sedge	129
20	Water content in plant stock of tube sedge plant samples	130
21	Estimation of dry plant biomass of the tube sedge	130
22	Nutrient removal efficiency of the tube sedge in the treatment tanks	134
23	Nutrient removal changes in the tube sedge treatment tanks within a 2-week experimental period	135
24	Nutrient retention in plant biomass of tube sedge in treatment and control tanks	137
25	Nutrient content in plant stock and treated plant samples of the tube sedge	137
26	Total above-ground plant biomass of common reed and tube sedge harvested from treatment and control tanks	141
27	Comparison of nutrient content in plant samples collected from inflow and outflow of the common reed and tube sedge treatment tanks	143
28	Nutrient content in above-ground and below-ground plant biomass of common reed and tube sedge treatment and control tanks	150
29	Nutrient accumulation in plant biomass of the common reed and tube sedge in treatment and control tanks	150
30	Total net nutrient accumulation in plant biomass of the common reed and tube sedge	152
31	Net percentage of nutrient accumulation of the common reed and tube sedge	153
32	The nutrient removal efficiencies of studies of plant species in constructed wetlands	157
33	Nutrient accumulation in substrate samples in the experimental and control tanks of the common reed and tube sedge	159
34	Net percentage of nutrient accumulation in the common reed plant litter	161
35	Growth of the tube sedge treatment and control plant samples in half nutrient concentrations	163

36	Growth of the tube sedge in the treatment and control tanks loaded with full and half nutrient concentrations	164
37	Fresh biomass per plant, total fresh plant biomass in treatment and control tanks of the tube sedge loaded with half nutrient concentrations	167
38	Total plant biomass in the experimental tanks of tube sedge under different nutrient loading conditions	167
39	Water sample nutrient content analysis in the tube sedge treatment tanks loaded with full and half nutrient concentrations	168
40	Nutrient content in plant biomass in tube sedge treated with half nutrient concentration	171
41	Nutrient content in above-ground and below-ground plant biomass of tube sedge treatment tanks under different nutrient loading conditions	172
42	Nutrient accumulation by plant biomass of the tube sedge under full nutrient and half nutrient concentrations	175
43	Total net nutrient accumulation in plant biomass of the tube sedge under full nutrient and half nutrient concentrations	176
44	Net percentage of nutrient accumulation in the tube sedge in full and half nutrient concentrations	176
45	Physical condition of the common reed experimental tanks	177
46	Impact of rainfall on the nutrient removal in the common reed and tube sedge treatment tank system	197
47	The overall performance of nutrient removal in common reed and tube sedge pilot experimental tanks	201
48	Ranges of water quality data from four sampling sites at the inlet of UN 6, outlets of UN 6, UN 5 and UN 4 in Putrajaya Wetlands and water quality standards	203
49	Hydraulic loading rate in UN 1 and UN 8 in Putrajaya Wetlands	243
50	Total Nitrogen, Nitrate-Nitrogen, Ammoniacal-Nitrogen and Phosphate removal rate from four sampling sites at UN 4, UN 5 and UN 6 in Putrajaya Wetlands in October 2001 - December 2002	244
51	Total Nitrogen, Nitrate-Nitrogen, Ammoniacal-Nitrogen and Phosphate	245

	removal rate from five sampling sites at UN 1, UN 4, UN 5 and UN 6 in Putrajaya Wetlands in April - December 2004	
52	Nutrient removal performance along wetland cells UN 1 and UN 6 based on water discharge data	248
53	Nutrient parameter collected from wetland cells UN 1-6 in October 2000 to July 2001	250
54	Nutrient parameter from wetland cells UN 1-6 in November 2002 to July 2003	251
55	Ranges and average values of turbidity removal percentage along wetland cells	252
56	Rainfall within 3 sampling days and average Total Nitrogen, Nitrate- Nitrogen, Ammoniacal-Nitrogen, Phosphate removal rate along UN 4-6, Putrajaya Wetlands in 2001-2002 and 2004	255
57	Impact of rainfall on nutrient removal in 2001-2002 and 2004 in UN 4-6, Putrajaya Wetlands	255
58	Aspect ratio of wetland cells UN 1 to UN 6	257
59	Nutrient content in substrate samples harvested from the wetland cells UN 5 and UN 6 in October 2001 and April 2004	257
60	Nutrient content in plant tissue harvested from the wetland cells UN 5 and UN 6 in October 2001 and April 2004	259
61	Plant growth monitoring in Putrajaya Wetlands	261
62	Comparison of plant growth of the common reed and tube sedge in the field in Putrajaya Wetlands cells and in the treatment tanks	270
63	Comparison of nutrient concentration in plant tissue samples collected from treatment tanks and in the field	273
64	Nutrient concentration in plant and substrate samples collected from wetland cell UN 5	274
65	Comparison of nutrient content in substrate samples collected from the treatment tanks and in the field	275
66	Nutrient removal efficiency in the pilot and field study	277

67	Comparison of rainfall impact on nutrient removal in the pilot tank study and	278
	field study in Putrajaya Wetlands	

68 Ratio of concentration of Phosphate and Nitrate in the wetland plants 280 in wetland cell UN 5

LIST OF FIGURES

Figu	Figure		
1	A surface flow constructed wetland for dairy waste treatment in New Zealand	12	
2	A wetland treatment system at Honghu Park, Shenzhen, Southern China	13	
3	A pilot sewage treatment system at Asian Institute of Technology, Thailand	13	
4	A pilot study of a vertical flow wetland system in Denmark	14	
5	A surface flow wetland system for sewage treatment from a small village in Denmark	14	
6	A natural wetland with Lepironia plant community, Tasek Bera	20	
7	A constructed wetland, Putrajaya Wetlands	20	
8	Typical configuration of a horizontal-flow wetland system	21	
9	Typical configuration of a surface flow wetland system	23	
10	Typical configuration of a sub-surface flow wetland system	24	
11	Typical configuration of a vertical flow wetland system	26	
12	The water hyacinth Eichhornia crassipes	28	
13	The cattail Typha angustifolia	29	
14	Propagation of common reed <i>Phragmites karka</i> using stem cutting method at Putrajaya Wetlands	36	
15	The extensive root system of emergent wetland plants	39	
16	Pollutant removal processes in a constructed wetland system	48	
17	Nitrogen transformations in a constructed wetland treatment system	52	
18	The location of Putrajaya city	64	
19	The longitudinal section of a typical wetland cell at Putrajaya Wetlands	66	
20	Location of wetland cells at Putrajaya Wetlands	68	

21	The experimental arrangement of the pilot tank study	81
22	The layout plan of the experimental tanks	82
23	Transplanting of the tube sedge plant samples into experimental tanks	82
24	Early stage of experimental tanks planted with tube sedge, under shaded condition (picture taken after 5 weeks after planting)	83
25	The nutrient solutions are being re-circulated manually (picture taken after 4 months into experimental period)	83
26	The nutrient solutions are being re-circulated by pumping using a car battery as a power source	84
27	The common reed Phragmites karka	86
28	The tube sedge Lepironia articulata	87
29	Location of sampling stations at Upper North wetland cells	96
30	Author analysing water quality using portable meters at the inlet structure of UN 5 weir	97
31	Author analysing water quality of inflow from side banks of UN 6 IOI	98
32	A view of UN 6 downstream wetland cell	98
33	A view of UN 4 weir	99
34	A view of UN 4 inlet structure	99
35	The common reed treatment and control tanks	109
36	The extensive growth of common reed runners in treatment tanks	110
37	New shoots of the common reed in treatment tanks	110
38	Stem length of common reed in treatment and control tanks	111
39	Length length of common reed in treatment and control tanks	111
40 41	Shoot number of common reed in treatment and control tanks Comparison of shoot growth of common reed treatment and control samples	112 112

