A MULTISTAGE DECISION-MAKING MODEL FOR GREEN REVERSE LOGISTICS

ALI HAJI VAHABZADEH

FK 2013 14
A MULTISTAGE DECISION-MAKING MODEL FOR GREEN REVERSE LOGISTICS

By

ALI HAJI VAHABZADEH

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

February 2013
I DEDICATED THIS THESIS TO MY BELOVED MOTHER, FATHER, AND SISTERS WHO SUPPORTED ME EACH STEP OF THE WAY.
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science

A MULTISTAGE DECISION-MAKING MODEL FOR GREEN REVERSE LOGISTICS

By

ALI HAJI VAHABZADEH

February 2013

Chair: Professsor Rosnah bt. Mohd. Yusuff, PhD

Faculty: Engineering

Reverse Logistics (RL) has an increasing impact on corporate image. In order to increase the competitive advantage and recapture the value of returns in the RL, companies have to develop a holistic strategy and efficient techniques. Besides, legislative policies with respect to the environment and sustainability have enforced manufacturers to accept the responsibility of taking back their returns. Nonetheless, many companies are not capable of applying the current tools to satisfy their requirements. To address this issue, a multi stage decision-making model by combining the concept of Green and RL has been proposed in this research. This model consists of three stages: quality inspection, cost calculation and analysis, and green environmental factors. In the first stage, the model proposes the quality level of returns by using Analytical Hierarchy Process (AHP). In the second stage, the total cost of each possible decision option would be calculated based on the traditional costing system. And in the
final stage, the environmental impacts of RL on the environment would be measured by employing the VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) technique. The output of the proposed model would be the best decision option in dealing with the returns in terms of quality, cost, and green areas. In order to verify and validate the proposed model, an expert opinion elicitation and a case study in the computer industry, which is called the ABC Company, (e.g. Hard Disk) have been conducted, respectively.

In the verification phase, the sixteen qualified experts from both academia and industry have approved the terms, contents, criteria and the methods which have been used in each stage of the model via interviews. Ultimately, in order to analyze and test the validity of the whole model in a real world, a case study in a computer industry and specifically the Hard Disk product as a return has been carried out. In this case study, the two quality problems including the pin contamination and the yoke height of the Hard Disk have been considered as the two main problems to study. The five qualified experts from the three departments (quality management, accounting, and logistics and HSE) have expressed their technical views in each stage of the model. The results in the first stage of the model have represented that, the quality level of returns according to the AHP model is low quality and is equal to 0.2843. The findings in the second stage of the model have shown that the recycling and disposal options with RM2359.4, and RM2354.75 for the understudy returned batch (48 PC of Hard Disk), have the two lowest costs, respectively. And, in the final stage of the model, the results based on the VIKOR method has demonstrated that the recycling with $Q_{rec} = 0.3843$ compare to
disposal recovery option with $Q_{\text{dis}} = 1$ has the minimum impact on the environment and therefore the recycling would be the best and final proposed recovery option for the returned Hard Disk.
A Model Membuat Keputusan Berperingkat Untuk Logistik Hijau Berpatah

Oleh

ALI HAJI VAHABZADEH

Februari 2013

Pengerusi: Professor Rosnah bt. Mohd. Yusuff, PhD

Fakulti: Kejuruteraan

tradisional. Pada peringkat akhir, kesan RL terhadap alam sekitar akan diukur dengan menggunakan teknik VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR). Hasil model yang dicadangkan akan menjadi pilihan keputusan yang terbaik dari segi kualiti, kos, dan kawasan hijau. Dalam usaha untuk mengesahkan model yang dicadangkan, pendapat pakar diperoleh dan satu kajian kes dalam industri computer (contohnya cakera keras) telah dijalankan.

Dalam fasa pengesahan, pakar berkelakalan dari kedua-dua ahli akademik dan industri telah meluluskan terma, kandungan, kriteria dan kaedah yang telah digunakan dalam setiap peringkat model melalui wawancara. Akhirnya, untuk menganalisis dan menguji kesahihan model keseluruhan di dunia sebenar, satu kajian kes dalam industri komputer dan khususnya produk cakera keras sebagai output telah dijalankan. Dalam kajian kes ini, kedua-dua masalah kualiti termasuk pencemaran pin dan ketinggian cakera keras telah dianggap sebagai dua masalah utama untuk kajian. Lima pakar berkelakalan dari tiga jabatan (kualiti pengurusan, perakaunan, dan logistik) telah menyatakan pandangan teknikal mereka dalam setiap peringkat model. Keputusan di peringkat pertama model telah menunjukkan bahawa tahap kualiti output mengikuti kepada model AHP adalah berkualiti rendah dan adalah sama dengan 0,2843. Penemuan dalam peringkat kedua model telah menunjukkan bahawa kitar semula dan pilihan pelupusan dengan RM2359.4, dan RM2354.75 untuk pelaku kembali batch (48 PC cakera keras), mempunyai kos kedua terendah. Dan, di peringkat akhir model, keputusan berdasarkan kepada kaedah VIKOR telah menunjukkan bahawa kitar semula dengan Qrec = 0.3843 berbanding dengan pilihan pemulihan pelupusan dengan Qdis = 1 mempunyai impak
yang minimum terhadap alam sekitar dan oleh itu kitar semula akan menjadi keputusan terbaik dan pilihan pemulihan terakhir yang dicadangkan untuk cikala keras yang dipulangkan.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor Prof. Dr. Rosnah Mohd. Yusuff for the continuous support of my Master study and research, for her patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis.

Besides my supervisor, I would like to thank my co-supervisor Dr. Norzima bt. Zulkifli for her encouragement, and insightful comments.

I wish to thank Mr. Tee Hor Chang, Mrs. Letchumy, Mrs. BY. Kuan, and Mrs. Shida from ABC company who helped to handle my research.

My sincere thanks also go to my family, Farideh Khayati, Boyouk Haji Vahabzade, Padideh Haji Vahabzadeh, Pariya Haji Vahabzadeh, and Mohammad Reza Khalilipour Ebrahimi. Their love provided me with inspiration and was my driving force. I owe them everything and wish I could show them just how much I love and appreciate them.
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rosnah bt. Mohd. Yusuff, PhD
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

Norzima bt. Zulkifli, PhD
Senior Lecturer
Faculty of Engineering
Universiti Putra Malaysia
(Member)

BUJANG BIN KIM HUAT, PhD
Professor and Dean
School of Graduate Studies
Universiti Putra Malaysia
Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at University Putra Malaysia or at any other institution.

………………………….

ALI HAJI VAHABZADEH

Date: 7 February 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vi</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xix</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xx</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 General Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Problem Statement</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Research Objectives</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Research Questions</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Scope of Study</td>
<td>5</td>
</tr>
<tr>
<td>1.6 Outline of the Thesis</td>
<td>7</td>
</tr>
<tr>
<td>2 LITERATURE REVIEW</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Logistics and Logistics Management</td>
<td>9</td>
</tr>
<tr>
<td>2.2 Reverse Logistics (RL)</td>
<td>11</td>
</tr>
<tr>
<td>2.3 Difference between Forward and Reverse Logistics</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Difference between Waste Management and Reverse Logistics</td>
<td>20</td>
</tr>
<tr>
<td>2.5 Difference between Green Logistics and Reverse Logistics</td>
<td>21</td>
</tr>
<tr>
<td>2.6 Key Drivers for Reverse Logistics</td>
<td>23</td>
</tr>
<tr>
<td>2.6.1 Economics</td>
<td>24</td>
</tr>
<tr>
<td>2.6.2 Marketing</td>
<td>25</td>
</tr>
<tr>
<td>2.6.3 Environmental and Green Concerns</td>
<td>25</td>
</tr>
<tr>
<td>2.6.4 Corporate Citizenship</td>
<td>28</td>
</tr>
<tr>
<td>2.7 Reverse Logistics Activities</td>
<td>29</td>
</tr>
<tr>
<td>2.8 Reverse Logistics and Recapturing the value of Returns</td>
<td>30</td>
</tr>
<tr>
<td>2.9 Cost Class and Cost Element in Reverse Logistics</td>
<td>31</td>
</tr>
<tr>
<td>2.10 Material Flow and Operational Functions in Reverse Logistics</td>
<td>34</td>
</tr>
<tr>
<td>2.11 Reverse Logistics Network and Flow Diagram</td>
<td>36</td>
</tr>
<tr>
<td>2.12 Multi Criteria Decision-Making Models</td>
<td>43</td>
</tr>
<tr>
<td>2.12.1 Multi Criteria Decision-Making Models in Reverse Logistics</td>
<td>46</td>
</tr>
<tr>
<td>2.12.2 Analytical Hierarchy Process (AHP)</td>
<td>50</td>
</tr>
<tr>
<td>2.12.3 VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method</td>
<td>54</td>
</tr>
<tr>
<td>2.13 Quantitative and Qualitative Research Approaches</td>
<td>56</td>
</tr>
</tbody>
</table>
2.14 Summary

3 METHODOLOGY

3.1 Introduction
3.2 Research Design
3.3 Research Steps

3.3.1 The Necessity of Quality Inspection, Cost Analysis, and Green Environmental Factors in Reverse Logistics

3.3.2 Proposed Preliminary Multi Stage Decision Making model in Reverse Logistics

3.4 Quality Level of Returns in Reverse Logistics
3.5 Quality Inspection based on the AHP Method
3.6 Cost Category in Traditional Costing Method

3.6.1 Selecting the Minimum Cost among Different Recovery Option

3.7 Green Environmental Decision by Using VIKOR Method

3.7.1 Arrange Environmental Factors based on VIKOR Method

3.8 Case Study On Reverse Logistics: Company Introduction

3.8.1 Reverse Logistics at ABC Company

4 RESULTS AND DISCUSSION

4.1 Introduction
4.2 Responses From Interviewing with the Experts
4.3 Final Proposed Multi Stage Decision-Making Model for Reverse Logistics

4.4 Data Analysis in Interviewing with the Experts

4.4.1 Data Analysis in Quality Inspection

4.4.2 Data Analysis in Cost Calculation

4.4.3 Data Analysis in Green Environmental Factors

4.5 Data Analysis in Case Study

4.5.1 Data Analysis in Quality Inspection

4.5.2 Data Analysis in Cost Calculation

4.5.3 Data Analysis in Green Environmental Factors

4.6 Discussion

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH

5.1 Introduction
5.2 Conclusion
5.3 Recommendation for future research

REFERENCES/BIBLIOGRAPHY
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D
BIODATA OF STUDENT