

UNIVERSITI PUTRA MALAYSIA

BLOCK BACKWARD DIFFERENTIATION FORMULA FOR SOLVING ORDINARY AND ALGEBRAIC DIFFERENTIAL EQUATIONS

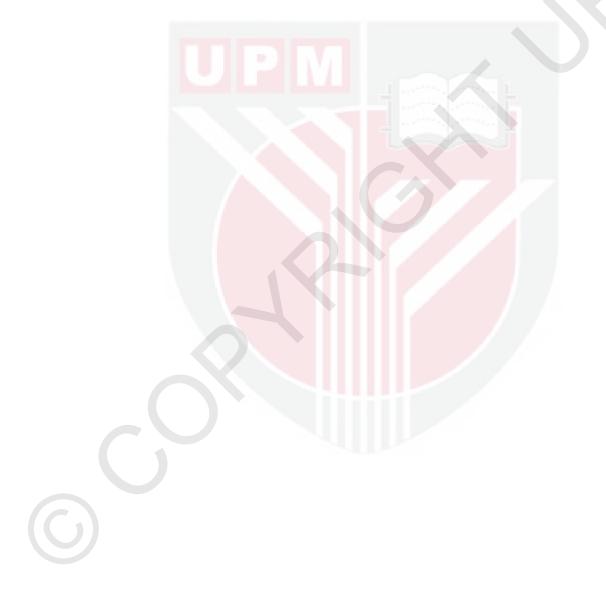
NAGHMEH ABASI

IPM 2014 1

BLOCK BACKWARD DIFFERENTIATION FORMULA FOR SOLVING ORDINARY AND ALGEBRAIC DIFFERENTIAL EQUATIONS

By

NAGHMEH ABASI


Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

January 2014

COPYRIGHT

All material contained within the thesis, including without limitation text, logos, icons, photographs, and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright© Universiti Putra Malaysia

DEDICATIONS

To

My lovely parents

and

My adorable sisters, Neda and Nikoo

and -

My beloved brother, Mohammad Hasan

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

BLOCK BACKWARD DIFFERENTIATION FORMULA FOR SOLVING ORDINARY AND ALGEBRAIC DIFFERENTIAL EQUATIONS

By

NAGHMEH ABASI

January 2014

Chair: Dato' Mohamed Bin Suleiman, PhD Faculty: Institute for Mathematical Research (INSPEM)

This research focuses on solving semi-explicit index-1 Differential Algebraic Equations (DAEs) which is a special case of Differential Algebraic Equations (DAEs). Block Backward Differentiation Formula (BDF) methods of constant and variable step sizes are considered to produce more than one solutions per step for the DAEs concurrently. A formula of the 2-point with off-step points using block BDF method of constant step size for solving stiff ODEs is developed. The stability analysis shows that the method is A-stable. The method has competitive results in comparison with the existing block BDF method in terms of accuracy and time. The 2-point, 3-point and 2-point with off-step points block backward differentiation formulae of constant step size are extended for solving semi-explicit index-1 Differential Algebraic Equations (DAEs). Newton's iteration is used for the implementation of the methods. It is seen that the block BDF methods applied are more suitable than the existing BDF method in terms of accuracy and the time is competitive. In addition, a 3-point block backward differentiation formula using variable step size for solving stiff Ordinary Differential Equations (ODEs) is formulated. The strategy applied for selecting the step size and the stability regions are described. The accuracy of the developed method is seen to be better than the existing variable step block BDF. Solving semi-explicit index-1 DAEs using 2-point and 3-point block backward differentiation formula of variable step size are also considered. The strategies involved in the choosing and controlling the step size of both methods are described. The codes developed indicate that the methods have outperformed the existing method in reducing the error while the time is competitive. The numerical results indicate that the block BDF methods of constant and variable step size for solving semi-explicit index-1 DAEs have better accuracy and efficiency in comparison with the existing constant and variable step BDF methods.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putran Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

KAEDAH BLOK FORMULASI BEZA KE BELAKANG UNTUK MENYELESAIKAN PERSAMAAN PEMBEZAAN BIASA DAN ALJABAR

Oleh

NAGHMEH ABASI

Ja<mark>n</mark>uari 2014

Pengerusi: Dato' Mohamed Bin Suleiman, Ph.D. Fakulti: Institut Penyelidikan Matematik (INSPEM)

Kajian ini tertumpu kepada penyelesaian persamaan pembezaan aljabar (PPA) semi tak tersirat indeks-1 yang merupakan kes khas PPA . Kaedah blok formulasi beza ke belakang (FBB) dengan saiz langkah tetap dan saiz langkah boleh ubah dipertimbangkan untuk menghasilkan lebih daripada satu penyelesaian serentak dalam setiap langkah. Satu formula 2-titik FBB dengan saiz langkah tetap dengan titik-titik luar langkah untuk menyelesaikan persamaan pembezaan biasa (PPB) kaku dibangunkan. Analisis kestabilan menunjukkan kaedah ini adalah A stabil. Kaedah ini mempunyai keputusan yang kompetitif dibandingkan dengan blok FBB yang sedia ada dari segi kejituan dan masa. Blok FBB 2-titik, 3-titik dan 2-titik luar langkah dengan saiz langkah tetap di perluaskan untuk menyelesaikan PPA semi tak-tersirat indexs-1. Lelaran Newton digunakan bagi pelaksanaan kaedah tersebut. Dilihat bahawa penggunaan kaedah ini adalah lebih sesuai berbanding kaedah FBB yang sedia ada serta kompetitif dari segi kejituan dan masa. Blok FBB 3-titik yang menggunakan saiz langkah boleh ubah dirumus untuk menyelesaikan PBB kaku. Strategi yang digunakan untuk memilih saiz langkah dan rantau kestabilan dihuraikan. Kejituan kaedah yang dibangunkan dilihat lebih baik daripada langkah boleh ubah blok FBB yang sedia ada. Penyelesaian PPA semi taktersirat indeks-1 yang menggunakan blok FBB 2-titik dan 3-titik dengan saiz langkah boleh ubah juga dipertimbangkan. Strategi-strategi yang terlibat untuk memilih dan mengawal saiz langkah dalam kedua-dua kaedah dihuraikan. Kod-kod yang dibangunkan menunjukkan kaedah yang dibangunkan mengatasi kaedah yang sedia ada dalam mengurangkan ralat masa pengiraan adalah kompetitif. Keputusan berangka menunjukkan bahawa kaedah blok FBB yang diperluaskan kepada saiz langkah tetap dan boleh ubah mempunyai kejituan dan kecekapan yang lebih baik berbanding dengan kaedah FBB saiz langkah tetap dan boleh ubah apabila menyelesaikan PPA semi tak tersirat indeks-1.

ACKNOWLEDGEMENTS

First of all, I would like to express my profound gratitude to Allah for giving this opportunity to continue my study in Malaysia.

I am extremely indebted to my supervisor, Professor Dato' Dr. Mohamed Bin Suleiman, for his excellent supervision, insightful comments, invaluable guidance and for the financial support. He is the one always trying to keep me calm during some difficulties. He deserves special recognition because without his help, this research would not be finished. He helped me more than I can express them in words, may allah bless him.

Thanks to dear Professor. Dr. Fudziah Ismail, the head of the mathematic department and as a member of supervisory committee for giving useful comments and cooperation.

I would like to thank to Associate Professor Dr. Zarina Bibi Ibrahim being as a member of the supervisory committee for her cooperation and guidance.

My sincere appreciation to Prof. Dr. Kamal Arfin M. Atan, Director of INSPEM and all members of Institute for Mathematical Research (INSPEM), for their great support and guidance to provide a unique academic environment.

I would like to thank to all the lectures of Institute for Mathematical Research and Department of Mathematics, Universiti Putra Malaysia.

My deep gratitude and special thanks goes to my grandmother (Mrs. Tahmineh Khahi), my lovely parents (Mr. Mostafa Abbasi and Mrs. Fahimeh Tehrani), my beloved sisters (Mrs. Neda and Nikoo), my dear brother (Mr. Mohammad Hasan), my kind brothers-in-law (Mr. Majid and Ehsan) and my sweet niece and nephew (Ava and Nikbod) for their love, support, encouragement and all their prayers.

Finally I would like to thank all my friends, particulary Hamisu Musa, Faranak Rabiei, Forough Barani, Ehsan Oskoueian, Mahsa Barkhi, Sima Taheri and Leila Tafreshi.

I certify that a Thesis Examination Committee has met on 10 January 2014 to conduct the final examination of Naghmeh Abasi on her thesis entitled "Block Backward Differentiation Formula for Solving Ordinary and Algebraic Differential Equations" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Thesis Examination Committee were as follows:

Azmi bin Jaafar, PhD

Associate Professor Faculty of Computer Science and Information Technology Universiti Putra Malaysia (Chairman)

Zanariah binti Abdul Majid, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Mohd Rizam bin Abu Bakar, PhD Associate Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Abduvali Khaldjigitov, PhD

Professor National University of Uzbekistan Uzbekistan (External Examiner)

NORITAH OMAR, PhD Associate Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 10 March 2014

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy.

The members of the Supervisory Committee were as follows:

Dato' Mohamed Bin Suleiman, PhD

Professor Institute for Mathematical Research Universiti Putra Malaysia (Chairperson)

Fudziah Ismail, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

Zarina Bibi Ibrahim, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

> **BUJANG BIN KIM HUAT, PhD** Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

Declaration by graduate student

I hereby confirm that:

- this thesis is my original work;
- quotations, illustrations and citations have been duely referenced;
- this thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia(Research) Rules 2012;
- written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published in book form;
- there is no plagiarism or data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature:	Date:
Name and Matric No:	

Declaration by Members of Supervisory Committee

This is to confirm that:

- the research conducted and the writing of this thesis was under the supervision;
- supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature:	Signature:
Name of	Name of
Chairman of	Member of
Supervisory	Supervisory
Committee:	Committee:
Signature:	
Name of	
Member of	
Supervisory	
Committee:	

TABLE OF CONTENTS

		Page
DE	EDICATIONS	i
AF	BSTRACT	ii
AI	BSTRAK	iii
AC	CKNOWLEDGEMENTS	iv
	PPROVAL	v
	ECLARATION	vii
	ST OF TABLES	xii
	ST OF FIGURES	xiii
LI	ST OF ABBREVIATIONS	xiv
CH	IAPTER	
1	INTRODUCTION	1
_	1.1 Introduction	1
	1.2 Motivation of the study	2
	1.3 Objectives of the thesis	2
	1.4 Scope and Relevance	3
	1.5 Outline of the thesis	3
2	LITERATURE REVIEW	5
	2.1 Introduction	5
	2.2 Ordinary Differential Equations	5
	2.2.1 Basic definitions and theorems for ODEs	5
	2.2.2 Numerical methods for stiff ODEs	9
	2.2.3 Block methods for ODEs	10
	2.2.4 Block methods for stiff ODEs	11
	2.2.5 Numerical methods with off-step points for ODEs	11
	2.3 Differential Algebraic Equations	12
	2.3.1 Basic Definitions for DAEs	12
	2.3.2 Numerical methods for DAEs	14
	2.3.3 Numerical methods for index-1 DAEs	15
	2.3.4 Numerical methods for higher index DAEs	16
3	DERIVATION OF 2-POINT BLOCK BDF METHOD	
	OFF-STEP POINTS FOR SOLVING STIFF ODES	17
	3.1 Introduction	17
	3.2 2-point block BDF with off-step points formulation	17
	3.3 Derivation of predictors	19

3.4 Order of the method

20

3.5	Stability Analysis	23
3.6	Convergence of the method	25
3.7	Implementation of the method	26
3.8	Test problems	30
3.9	Numerical results	31
3.10	Discussion on the results	36
3.11	Conclusion	36

4	BL(OCK BDF METHODS OF CONSTANT STEP SIZE FOR	
	SOI	VING SEMI-EXPLICIT INDEX-1 DAES	37
	4.1	Introduction	37
	4.2	Block multistep methods	37
	4.3	Implementation of the block BDF methods for DAEs	38
	4.4	Newton's iteration for DAEs	39
		4.4.1 2-point block BDF method	40
		4.4.2 3-point block BDF method	42
		4.4.3 2-point block BDF method with off-step points	45
	4.5	Test problems	50
	4.6	Numerical results	52
	4.7	Discussion on the results	59
	4.8	Conclusion	59

5 DERIVATION OF VARIABLE STEP SIZE 3-POINT BLOCK BDF METHOD FOR SOLVING STIFF ODES 60

5.1	Introduction	60
5.2	Derivation of variable step 3-point block BDF method	60
5.3	Derivation of predictors	66
5.4	Order of the method	68
5.5	Stability Analysis	76
5.6	Convergence of the method	90
5.7	Implementation of the method	90
5.8	The Local Truncation Error	92
5.9	Choosing the step size	93
5.10	Test problems	94
5.11	Numerical results	96
5.12	Discussion on the results	100
513	Conclusion	100

6	VA	RIABLE STEP BLOCK BDF METHODS FOR S	SOLVING
	SEN	MI-EXPLICIT INDEX-1 DAES	101
	6.1	Introduction	101
	6.2	Review of variable step block BDF methods for ODEs	101
	6.3	Variable step block BDF methods for DAEs	102
	6.4	Implementation of the methods	103
	6.5	The Local Truncation Error	107

Х

	6.6	Choosing the stepsize	108
	6.7	Test problems	108
	6.8	Numerical results	108
	6.9	Discussion on the results	116
	6.10	Conclusion	116
7	COI	NCLUSION	117
	7.1	Summary of thesis	117
	7.2	Future work	118
RI	EFEI	RENCES/BIBLIOGRAPHY	119
APPENDICES			
BI	ODA	ATA OF STUDENT	136
LIST OF PUBLICATIONS			137

G