

UNIVERSITI PUTRA MALAYSIA

OPTIMISATION OF DISTRIBUTED GENERATION IN ELECTRIC POWER SYSTEMS USING FUZZY-GENETIC ALGORITHM APPROACH

MUDATHIR FUNSHO AKOREDE

FK 2011 66

OPTIMISATION OF DISTRIBUTED GENERATION IN ELECTRIC POWER SYSTEMS USING FUZZY-GENETIC ALGORITHM APPROACH

MUDATHIR FUNSHO AKOREDE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

August 2011

DEDICATION

This thesis is dedicated to my parents, late **Alhajj Salahu-deen Akorede** and **Madam Sefinat Akorede**, for their inestimable contributions in my life.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy.

OPTIMISATION OF DISTRIBUTED GENERATION IN ELECTRIC POWER SYSTEMS USING FUZZY-GENETIC ALGORITHM APPROACH

By

MUDATHIR FUNSHO AKOREDE

August 2011

Chairman: Hashim Hizam, PhD

Faculty: Engineering

To maximise the benefits offered by distributed generation (DG) in electric power systems, there is clearly a need to determine the optimum size, as well as the best site of that particular DG unit(s) in the network. Recent research has shown that improper placement of DG units in power systems would not only lead to an increased energy loss cost, but could also jeopardize the system operation. To avert these scenarios and tackle this optimisation problem, this thesis proposes two models to guide electric utilities in determining the optimal capacity and location of DG units in power networks.

The first model for meshed electric power networks, which could be employed for subtransmission networks operating at up to 132 kV level, uses two objective

functions. The model maximises the system loading margin as well as the profit of the distribution company (DISCO) over the planning period. The other model is designed for radial distribution networks operating at 33 kV and below voltage levels. The main objective functions considered in this model are maximisation of cost savings arising from energy loss, minimisation of line voltage drop, and maximisation of the transfer capability of the system. This model takes into account, the peculiarities of radial distribution networks, such as high R/X (resistance/reactance) ratio, voltage dependency and composite nature of loads.

To solve the proposed models, Genetic algorithm (GA) is used as an optimisation technique. In the GA, a fuzzy controller is used to dynamically adjust the crossover and mutation rates to maintain the proper population diversity (PD) during GA's operation. This effectively overcomes the premature convergence problem of the simple genetic algorithm (SGA). The accuracy of the proposed models is evaluated on test power systems, and the results obtained are compared with those of the existing approaches cited in this literature, which is highly impressive.

This thesis also investigates the impact of different penetration levels of DG in both subtransmission and distribution networks. In the study, a 15-bus test system is employed and modelled in detail using Power System Analysis Toolbox (PSAT). However, only synchronous type of DGs is considered since it is the most popular type in use. In this work, the impact of DG of different penetration levels on system stability and power quality are thoroughly examined under different fault scenarios. The results obtained suggest that 20 % penetration level of DG is optimal for both normal and during contingencies in the case study system.

This research work is concluded with a software development. The package called Power Flow Analysis and DG Optimisation Tool (PFADOT) is developed using the Graphical User Interface (GUI) of MATLAB. This provides a user friendly interface for the system operator in determining the optimal allocation of a single DG unit in radial distribution networks. The evolved package is tested with several test systems, and the results obtained are validated against an existing related package. The developed package does not only give more optimal results but also does that in a more computationally efficient manner. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah.

PENGOPTIMUMAN PENJANAAN TERAGIH DALAM SISTEM KUASA ELEKTRIK MENGGUNAKAN PENDEKATAN ALGORITMA GENETIK SAMAR

Oleh

MUDATHIR FUNSHO AKOREDE Ogos 2011

Pengerusi: Hashim Hizam, PhD

Fakulti: Kejuruteraan

Untuk memaksimumkan keuntungan yang ditawarkan oleh penjanaan teragih (DG) dalam sistem kuasa elektrik, jelas ada keperluan untuk menentukan saiz yang optimum, serta lokasi terbaik untuk sesuatu unit DG dalam rangkaian. Penyelidikan terkini menunjukkan bahawa penempatan unit DG yang tidak sesuai dalam sistem kuasa tidak hanya akan mengarah pada peningkatan kos tenaga yang hilang, tetapi juga boleh membahayakan sistem operasi. Untuk mengelakkan senario ini dan mengatasi masalah pengoptimuman, tesis ini mencadangkan dua model untuk memberi panduan kepada utiliti elektrik dalam menentukan kapasiti optimum dan lokasi DG dalam rangkaian elektrik.

Model pertama untuk rangkaian kekisi kuasa elektrik, yang boleh digunakan untuk rangkaian subtransmisi beroperasi hingga tahap 132 kV menggunakan dua fungsi

objektif. Model tersebut memaksimumkan margin beban sistem, serta keuntungan daripada syarikat pengedaran (DISCO) selama tempoh perancangan. Satu model lagi di reka untuk rangkaian pengedaran jejari beroperasi pada tahap voltan 33 kV dan ke bawah. Fungsi objektif utama yang dipertimbangkan dalam model ini adalah memaksimumkan penjimatan kos hasil dari kehilangan tenaga, meminimunkan kejatuhan voltan talian, serta memaksimumkan kemampuan pemindahan sistem. Model ini mengambil kira keunikan rangkaian pengedaran jejari, seperti nisbah R/X (rintangan bahagi reaktans) yang tingi, kebergantungan voltan dan sifat komposit beban.

Untuk menyelesaikan model yang dicadangkan, Algoritma Genetik (GA) digunakan sebagai satu teknik pengoptimuman. Dalam GA, pengawal samar digunakan secara dinamik untuk menyesuaikan kadar silang dan mutasi untuk memelihara kepelbagaian penduduk yang tepat (PD) selama operasi GA. Ini dapat mengatasi masalah penumpuan pramasa algoritma genetik ringkas (SGA). Ketepatan model yang dicadangkan dinilai pada sistem kuasa, dan hasil yang diperolehi dibandingkan dengan pendekatan yang sedia ada, adalah sangat baik.

Tesis ini juga mengkaji pengaruh penetrasi yang berbeza di kedua-dua rangkaian DG subtransmisi dan pengagihan. Dalam kajian tersebut, sistem ujian 15-bas digunakan dan dimodelkan secara terperinci dengan menggunakan Power System Analysis Toolbox (PSAT). Namun, hanya DG jenis selaras yang dipertimbangkan kerana ia merupakan jenis yang paling popular digunakan. Didalam tesis ini, kesan daripada DG pada tahap penetrasi yang berbeza pada kestabilan sistem dan kualiti kuasa elektrik secara menyeluruh diperiksa didalam senario kerosakan yang berbeza. Keputusan yang diperolehi menunjukkan bahawa 20% tingkat penetrasi DG adalah nilai optima bagi kajian kes untuk keadaan normal dan kontingensi.

Penyelidikan ini diakhiri dengan pembangunan perisian. Perisian yang dinamakan Power Flow Analysis and DG Optimization Tool (PFADOT) dibangunkan dengan menggunakan Graphical User Interface (GUI) dari MATLAB. Ia merupakan antara muka yang mudah digunakan oleh operator sistem dalam menentukan peruntukan optima unit DG tunggal dalam rangkaian pengedaran jejari. Perisian ini diuji dengan beberapa sistem ujian, dan hasil yang diperolehi disahkan dengan membandingkan dengan perisian yang sedia ada. Perisian yang dibangunkan bukan sahaja memberi keputusan yang optima tetapi juga melakukannya degan lebih efisen.

ACKNOWLEDGEMENTS

Man proposes but God disposes. All praise and thanks are due to the Almighty ALLAH (SWT), for giving me the grace, health and strength to pursue my PhD degree programme to a logical conclusion – *al-hamdulillah Robil alamin*.

Further, my bundle of appreciation goes to my supervisor, who is equally the Head of Electrical and Electronic Engineering Department, Universiti Putra Malaysia, **Assoc. Prof. Dr. Hashim Hizam** for his tremendous contribution and assistance in the course of this programme. His invaluable advice and encouragements have really contributed immensely to the success and completion of this programme in good time. Similarly, the financial assistance in form of Special Graduate Research Assistantship (SGRA) you offered in my second semester, which had a great impact on my academic and financial stability during the trying period, is gratefully acknowledged. May the Almighty Allah (SWT) reward you abundantly for this kind gesture.

In the same vein, I'm deeply grateful to my amiable Supervisory Committee Members, **Prof. Dr. Ishak Aris** and **Assoc. Prof. Dr. Mohd. Zainal A. Ab Kadir**, both of Electrical and Electronic Engineering Department, Universiti Putra Malaysia, for their availability, invaluable advices, constructive feedbacks and overall assistance to ensure that this thesis is of a high quality. Oh, I could not have had a better team. Other eminent lecturers, the technical staff and the entire support staff in the Department are equally appreciated for the good working relationship I enjoyed from them throughout my PhD programme in the Department.

Special thanks go to the Nigerian Community in UPM, popularly known as NaijaComm. Specifically, I wish to acknowledge and place in record the support received from Abdul-Fatah Akande, Tajudeen Ishola, Abdul-Hakeem Olaniyi, Aliyu Usman, Mohd Lawal Sani, Mrs Mariam Ahmed, Buba Sani Dahiru, Umar-Faruku Ambrusa, Wasiu Arolu and Peter Adeoye. Similarly, I wish to express my gratitude to my laboratory mates for the good working relationship we had during the period of my stay in the lab. They include Mojgan Hojabri, Khairi Budayawan, Syed Abdul-Bari, Lioe De Xing, Tan Gim Heng, and Tung Li Qian.

The technical advice, motivation and guidance received from Prof J. O. Ojo of Tennessee Technological University, USA and the moral and academic material support offered by Prof O. U. Aliyu of ATBU Bauchi Nigeria, in the course of this programme are acknowledged with appreciations. Furthermore, the kind of love, moral and material support given by Bisi Aina to my left behind family in Nigeria is gratefully acknowledged and appreciated. Indeed it is very hard to find your type of a true friend these days. As a matter of fact, you are a rare friend!

I wish to thank the School of Graduate Studies, Universiti Putra Malaysia (UPM) for facilitating this programme with its series of workshops, seminars, conferences, etc, organised free of charge with provision of adequate *makan* from time to time, by which postgraduate students are better and well informed of all it takes to successfully complete graduate degree programme at UPM in good time. In the same vein, the financial assistance in form of Graduate Research Fellowship (GRF), offered by the Universiti Putra Malaysia is gratefully acknowledged. Finally, I express my utmost gratitude to my beloved wife, **Mujidat Bukola**, for her care, love, inspirational words, continual prayers and moral support. This equally goes to my boys, **Abdul-Hameed**, **Abdul-Ahad** and especially **Abdus-Samad** whom I left with his mother at the age 5 months when I started this programme in July 2008. I am thankful of your perseverance and understanding especially at the time you needed me most as a husband and father respectively. My profound gratitude equally goes to my brothers, sisters, nephews, nieces and the entirety of the extended family. In like manner, I wish to express my profound gratitude to my in-laws, family friends and all my well wishers, for their understanding, moral and material support in various forms, to my nuclear family during my 3-year sojourn in Malaysia. Thank you all; God bless.

M. F. Akorede August 2011 I certify that a Thesis Examination Committee has met on **3rd August, 2011** to conduct the final examination of Mudathir Funsho Akorede on his degree thesis entitled **"Optimisation of Distributed Generation in Electric Power Systems using Fuzzy-Genetic Algorithm Approach"** in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P. U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Doctor of Philosophy.

Members of the Examination Committee were as follows:

Roslina bt. Mohd. Sidek, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ir. Norman b. Mariun, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Chandima Gomes, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Govinda Bol Shrestha, PhD

Associate Professor School of Electrical & Electronic Engineering Nanyang Technological University, Singapore (External Examiner)

NORITAH OMAR, PhD

Associate Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 23rd August, 2011

This thesis was submitted to the Senate of Universitit Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Hashim Hizam, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Ishak Aris, PhD

Professor Faculty of Engineering Universiti Putra Malaysia (Member)

Mohd Zainal Abidin Ab Kadir, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Member)

HASANAH MOHD. GHAZALI, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

MUDATHIR FUNSHO AKOREDE

Date: 3rd August, 2011

TABLE OF CONTENTS

	Page
DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENTS	ix
CERTIFICATION	xii
APPROVAL	xiii
DECLARATION	xiv
TABLE OF CONTENTS	XV
LIST OF TABLES	xix
LIST OF FIGURES	xx
LIST OF ABBREVIATIONS	xxiv
CHAPTER	
1 INTRODUCTION	1
1.1 Background of the Study	1
1.2 Problem Statement	5
1.3 Objectives of the Study	6
1.4 Motivation	/
1.5 Main Contributions	8
1.6 Organisation of the Thesis	10
2 DISTRIBUTED ENERGY RESOURCES	S OVERVIEW 12
2.1 Introduction	12
2.2 Distributed Energy Resources (DER)	12
2.2.1 Distributed Generation Techno	blogies 13
2.2.2 Energy Storage Technologies	29
2.3 Potential Benefits of DG	37
2.3.1 Higher Energy Efficiencies	37
2.3.2 Increased System Reliability	39
2.3.3 Alternative to Transmission a	nd Distribution

	Expansion	40
2.3.4	Peak Period Shaving	40
2.3.5	Environmental Impact Reduction	40
2.3.6	Minimises Damage to Health	42
2.3.7	Space Advantage	42
2.3.8	Others	43
The Ch	allenges Facing DG	43
2.4.1	Public Policies and Regulatory Issues	43
2.4.2	Economic Issues	44
2.4.3	Technical Issues	45
Conclus	sion	50
	2.3.4 2.3.5 2.3.6 2.3.7 2.3.8 The Chi 2.4.1 2.4.2 2.4.3 Conclus	Expansion2.3.4Peak Period Shaving2.3.5Environmental Impact Reduction2.3.6Minimises Damage to Health2.3.7Space Advantage2.3.8OthersThe Challenges Facing DG2.4.1Public Policies and Regulatory Issues2.4.2Economic Issues2.4.3Technical IssuesConclusion

3 QUANTITATIVE AND QUALITATIVE ANALYSIS OF SYSTEM STABILITY AND POWER QUALITY IN NETWORKS WITH DG OF DIFFERENT PENETRATION LEVELS 51

	3.1	Introdu	action	51		
	3.2	rk Description and Components Modelling	54			
		3.2.1	Power System Description	54		
		3.2.2	DG Penetration Level	56		
		3.2.3	Components Modelling	56		
	3.3	Impact	t of DG on Power Loss	60		
	3.4	Stability Analysis				
		3.4.1	Transient Stability	61		
		3.4.2	Frequency Stability	68		
		3.4.3	Voltage Stability	71		
	3.5	Power	Quality Issues	72		
		3.5.1	Steady-State Voltage Regulation	73		
		3.5.2	Voltage Sags	74		
	3.6	Conclu	ision	78		

4 EFFECTIVE METHOD FOR OPTIMAL ALLOCATION OF DISTRIBUTED GENERATION UNITS IN MESHED ELECTRIC POWER SYSTEMS 80

4.1 Introduction 82

	4.2	Problem Formulation					
		4.2.1	Objective Functions	86			
		4.2.2	Loading Margin Maximisation	86			
		4.2.3	Profit Maximisation	88			
		4.2.4	Membership Function for the Objective Functions	90			
	4.3	Brief (Dverview of Genetic Algorithm	91			
	4.4	The Pr	oposed Algorithm for DG Placement				
	4.5	Application to Test Systems					
	4.6	Results and Discussion 1					
		4.6. 1	Case 1 – 6-Bus Test System	100			
		4.6.2	Case 2 – 30-Bus Test System	100			
4.7 Conclusion				108			
	A FU	JZZY G	ENETIC ALGORITHM-BASED MODEL FOR				
	OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION						
	IN A RADIAL DISTRIBUTION NETWORK 109						
	5.1	action	110				
	5.2	Problem Formulation					
		5.2.1	Energy Loss Cost Savings (ELCS) Maximisation	113			
		522	Line Voltage Drop (LVD) Minimisation	114			

5	A FUZZY GENETIC ALGORITHM-BASED MODEL FOR				
	OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION				
	IN A RADIAL DISTRIBUTION NETWORK				
	5.1 Introduction				

• • •			
5.2	Problem	n Formulation	113
	5.2.1	Energy Loss Cost Savings (ELCS) Maximisation	113
	5.2.2	Line Voltage Drop (LVD) Minimisation	114
	5.2.3	Power Transfer Capability (PTC) Maximisation	115
	5.2.4	The Multi-Objective Function (MOBF)	116
5.3	Power 1	Flow Method	117
5.4	A Brief	Overview of Fuzzy genetic Algorithm	118
	5.4.1	Genetic Algorithm (GA)	118
	5.4.2	Fuzzy Set Theory	121
5.5	The Pro	oposed Algorithm	125
5.6	Applica	ation to Test Networks	127
	5.6.1	Case 1 – 30-Bus Radial Distribution System	129
	5.6.2	Case 2 – 69-Bus Radial Distribution System	132
5.7	Results	Comparison with Other Approaches	136
5.8	Conclu	sion	138

	6	6 A WINDOWS-BASED TOOL FOR POWER FLOW ANALYSIS			
AND DG OPTIMISATION IN RADIAL DISTRIBUTION			DG OPTIMISATION IN RADIAL DISTRIBUTION		
		NET	WORKS	140	
		6.1	Introduction	140	
		6.2	Objective Function Formulation	144	
		6.3	DG Placement Algorithm	146	
		6.4	Software Development Procedure	148	
			6.4.1 Designing a GUI	149	
			6.4.2 Starting GUIDE	150	
			6.4.3 Adding Components to a GUI	151	
			6.4.4 Programming a GUI	152	
			6.4.5 Software Development Process Limitation	152	
		6.5	Software Descriptions	153	
		6.6	Results and Discussion	159	
			6.6.1 Case study I – 12-Bus System	159	
			6.6.2 Case study II – 30-Bus System	160	
			6.6.3 Case study III – 69-Bus System	161	
		6.7	Conclusion	164	
	7	CON	ICI USIONS AND RECOMMENDATIONS FOR		
	1	FUT	URF RESEARCH	165	
		7.1	Conclusions	165	
		7.1	Pacommendations for Euture Pasaarch	166	
		1.2	Recommendations for Future Research	100	
	REFER	ENCES	5	168	
	APPENDICES			188	
A		pendix	A	189	
	Ap	pendix	B	190	
	Ap	pendix	C1	192	
	Арј Арј	pendix	C2	194	
		pendix	D	196	
	BIODA	ГА OF	STUDENT	199	
LIST OF PUBLICATIONS AND AWARDS FROM THE STUDY				200	