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INTRODUCTION

The generation of all n! permutations of 
n elements is a fundamental problem in 
combinatorics and important in computing. 
Various methods on listing all permutations 
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ABSTRACT

Linear array of permutations is hard to be factorised. However, by using a starter set, the process of 
listing the permutations becomes easy. Once the starter sets are obtained, the circular and reverse of 
circular operations are easily employed to produce distinct permutations from each starter set. However, 
a problem arises when the equivalence starter sets generate similar permutations and, therefore, willneed 
to be discarded. In this paper, a new recursive strategy is proposed to generate starter sets that will not 
incur equivalence by circular operation. Computational advantages are presented that compare the results 
obtained by the new algorithm with those obtained using two other existing methods. The result indicates 
that the new algorithm is faster than the other two in time execution.
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have been published and can be classified 
into two categories: (i) exchange-based 
techniques;  ( i i)  non-exchange-based 
techniques (Sedgewick, 1977). The exchange-
based techniques generate new permutations 
by making possible changes among two 
consecutive elements such as transposition 
of non-adjacent elements (Well, 1961; Heap, 
1963), and transposition with adjacent 
elements (Trotter, 1962; Johnson, 1963; Ives, 
1976; Gao & Wang, 2003; Viktorov, 2007; 
Borisenko et al. 2008). Whilst non-exchange-
based techniques generate new permutations 
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with certain restrictions such as lexicographic order (Ord-Smith, 1970), nested cyclic (Langdon, 
1967), and partial reversion (Zaks, 1984; Shin, 2002; Thongchiew, 2007). 

According to Sedgewick (1977), generating permutation under cycling restrictions is 
simpler and more powerful compared to other restriction techniques. Langdon (1967) and Iyer 
(1995) proposed a cycling technique where the main idea is to start with cycling interchange 
of n elements until two elements are cycled. However, Iyer’s (1995) technique is only valid 
for n <5 because repetition of permutation occurs when n > 4. 

In spite of that, Ibrahim et al. (2010) introduced a new permutation technique based on 
distinct starter sets that employ circular and reversing operations. The crucial task of these 
operations is to generate the distinct starter sets by eliminating the equivalence starter sets. 
Although this technique is simple and easy to use, unfortunately, eliminating the equivalence 
starters is quite tedious when the number of elements increases. This paper attempts to 
overcome this drawback by introducing a new strategy for generating distinct starter sets 
without eliminating the equivalence starter sets. 

MATERIALS AND METHODS

Preliminary definition

The following definitions will be used throughout this paper.

Definition 1. A starter set is a set that is used as a basis to enumerate other permutations.

Definition 2. An equivalence starter set is a set that can produce the same permutation from  
 other starter sets.

Definition 3. The reverse set is a set that is produced by reversing the order of the permutation  
 set.

Definition 4. A Latin square of order n is an n × n array in which n distinct symbols are arranged  
 where each symbol occurs once in each row and column.

Definition 5. The circular permutation (CP) of order n is a Latin square of order n.

Definition 6. The reverse of circular permutation (RoCP) is also a Latin square of order n  
 which is obtained by reversing arrangement elements in each row of circular  
 permutation.

Example 1. Consider n = 4 and the fixed element is 1. There are two starters: (1234) and  
 (1432). 

The circular process is applied on both starters. The CP of each starter is listed as followed:

1234 1432
2341 4321
3412 3214
4123 2143
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We may then apply the reversing process to either CP of the starter sets e.g. (1234) and RoCP 
as follows:

4321
1432
2143
3214

The RoCP of the starter (1234) generates the same permutation CP of (1432). Therefore, 
we refer to (1432) as the equivalence starter set of (1234). That equivalence starter set needs 
to be discarded. With a new algorithm, the equivalence starter sets will not be generated.

The development of the algorithm

The general algorithm for permutation generation follows:

Let S be the set of n elements i.e. (1, 2,3, , 3, 2, 1, )n n n n… − − −

Step 1: Set (1, 2,3, 4, , 3, 2, 1, )n n n n… − − − is taken as the initial permutation and it is assumed  
 to be without loss of generality; therefore, the first element is fixed.

Step 2: Identify the last three elements of initial permutation from Step 1. By employing  
 CP to the last three elements in initial permutation from step 1 three other distinct 
 starter sets are produced, as shown below:

1, 2, …, n−3, n−2, n−1, n
1, 2, …, n−3, n−1, n, n−2
1, 2, …, n−3, n, n−2, n−1

Step 3: Identify the last four elements of each starter set in Step 2. By employing CP to the  
 final four elements in each starter set in Step 2, 12 distinct starter sets are obtained,  
 as shown below.

1, 2, …, n−3, n−2, n−1, n 1, 2, …, n−3, n−1, n, n−2 1, 2, …, n−3, n, n−2, n−1
1, 2,…, n−2, n−1, n, n−3 1, 2, …, n−1, n, n−2, n−3 1, 2, …, n, n−2, n−1, n−3
1, 2, …, n−1, n, n−3, n−2 1, 2, …, n, n−2, n−3, n−1 1, 2, …, n−2, n−1, n−3, n
1, 2, …, n, n−3, n−2, n−1 1, 2, …, n−2, n−3, n−1, n 1, 2, …, n−1, n−3, n, n−2



Step n−2: Identify the last n−1 elements of each starter sets in step n−3 By employing to the

 last n−1 elements on each starter set in step n−3, the ( )-1 !
2

n  distinct starter sets are  
 obtained.

Step n−1: Perform CP and RoCP simultaneously on all n elements of the ( )-1 !
2

n  distinct starter  
 set, and n! distinct permutations are obtained.
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Step n: Display all n! permutations.

There are (n−2) steps needed to generate a starter set, after which, the CP and RoCP are 
employed on these starter sets to list down all n! distinct permutations.

To illustrate this algorithm, let’s consider the set of five elements, i.e. S = (1,2,3,4,5).

Step 1: Take Set (1, 2, 3, 4, 5) as the initial permutation that appears without loss of generality,  
 and the first element is fixed.

Step 2: Identify the last three elements of the initial permutation from Step 1. By employing  
 CP to the last three elements in the initial permutation from Step 1 three other distinct  
 starter sets are produced, as shown below:

1, 2, 3, 4, 5
1, 2, 4, 5, 3
1, 2, 5, 3, 4

Step 3: Identify the last four elements of each starter set in Step 2. By employing CP to the  
 last four elements on each starter set in Step 2, 12 distinct starter sets are obtained, as 
 shown below:

1, 2, 4, 5, 3 1, 2, 5, 3, 4 1, 2, 3, 4, 5
1, 4, 5, 3, 2 1, 5, 3, 4, 2 1, 3, 4, 5, 2
1, 5, 3, 2, 4 1, 3, 4, 2, 5 1, 4, 5, 2, 3
1, 3, 2, 4, 5 1, 4, 2, 5, 3 1, 5, 2, 3, 4

Step 4: Perform CP and RoCP simultaneously to all n elements of the 12 distinct starter sets  
 and 5! distinct permutations are obtained (see Table 1) .

Step 5: Display 5! distinct permutations ( see Table 1).

TABLE 1 
The 5! Distinct Permutations

CP RoCP CP RoCP
14532 23541 14253 35241
45321 12354 42531 13524
53214 41235 25314 41352
32145 54123 53142 24135
21453 35412 31425 52413
15324 42351 12534 43521
53241 14235 25341 14352
32415 51423 53412 21435
24153 35142 34125 52143
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CP RoCP CP RoCP
41532 23514 41253 35214
13245 54231 13452 25431
32451 15423 34521 12543
24513 31542 45213 31254
45132 23154 52134 43125
51324 42315 21345 54312
12453 35421 14523 32541
24531 13542 45231 13254
45312 21354 52314 41325
53124 42135 23145 54132
31245 54213 31452 25413
15342 24351 15234 43251
53421 12435 52341 14325
34215 51243 23415 51432
42153 35124 34152 25143
21534 43512 41523 32514
13425 52431 12345 54321
34251 51243 23451 15432
42513 31524 34512 21543
25134 43152 45123 32154
51342 24315 51234 43215

Remark 2: Permutations in bold represent the 12 starter sets for case n = 5. 

RESULTS AND DISCUSSION

Some theoretical results

The following lemmas and theorem are produced from the recursive circular permutation 
generation method.

Lemma 1. 2n distinct permutations are produced by each distinct starter set.

Proof: Suppose we have a starter set of A = (1,2,3 ... ,n−1, n) with n distinct elements.  
 By using definition 5 where all the elements are cycled to the left, n distinct  
 permutations are obtained, as given below:

1 2 … n−2 n−1 n
2 … n−2 n−1 n 1

n−2 n−1 n 1 2 …
n−1 n 1 2 … n−2
n 1 2 … n−2 n−1

TABLE 1 (continued) 
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Following then from definition 6 and reversing each row of CP produces other n 
distinct permutations, as given below:

n n−1 n−2 … 2 1
1 n n−1 n−2 … 2

… 2 1 n n−1 n−2
n−2 … 2 1 n n−1
n−1 n−2 … 2 1 n

Thus, 2n distinct permutations are produced.            �

Lemma 2. There are ( )-1 !
2

n  distinct starter sets which are generated recursively for 3n ≥  
 under circular operation.

Proof: Let (1, 2, 3, ..., n−3, n−2, n−1, n) be taken as the initial starter for any 3n ≥ . By 
 employing CP to the last three elements, three distinct starters are produced, as shown    
 below:

1 2 3 ... n−3 n−2 n−1 n (starter 1)
1 2 3 ... n−3 n−1 n n−2 (starter 2)
1 2 3 ... n−3  n n−2 n−1 (starter 3)

Then for each previous starter set, the last four elements are selected, and by employing 
CP on these elements of the previous starter sets, four distinct starters are produced, 
as shown below:

From starter 1,

1 2 3 ... n−1 n−1 n n−3
1 2 3 ... n−1 n n−3 n−2
1 2 3 ... n  n−3 n−2 n−1
1 2 3 ... n−3  n−2 n−1 n

From starter 2,

1 2 3 ... n−1 n n−2 n−3
1 2 3 ... n n−2 n−3 n−1
1 2 3 ... n−2  n−3 n−1 n
1 2 3 ... n−3  n−1 n n−2

From starter 3,

1 2 3 ... n n−2 n−1 n−3
1 2 3 ... n−2 n−1 n−3 n−1
1 2 3 ... n−1  n−3 n n−1
1 2 3 ... n−3  n n−2 n−1
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Thus, at this stage, the total starter sets are 3 × 4 = 12. The process will be continued 
until the last (n−1) element is selected.

3 last elements  3 starter sets
4 last elements  4 starter sets
5 last elements  5 starter sets

(n−2) last elements (n−2) starter sets
(n−1) last elements (n−1) starter sets

By product rule, the number of starter sets is

3 4 5 2 1n n× × × × − × −            (1)

1 2 3 4 5 2 1
2

n n= × × × × × × − × −            (2)

( )1 1 !
2

n= −
             (3)

Remark 3: For case n = 2 is impossible since it has only one distinct starter set 

 while ( )2 1 ! 1
2 2
−

= .

Theorem 1. The generation of all n! distinct permutations can be obtained by ( )-1 !
2

n  distinct  
 starter sets.

Proof: Lemma 2, there are ( )-1 !
2

n  distinct starter sets for 3n ≥  while from lemma 1,

2n distinct permutations are obtained by employing the circular and reversing process on the 
starter sets. 

 Thus, ( )1 !
2

2
n

n
−

×  = n! permutations are generated.                                                      

Analysis of time computation

In this section, this new algorithm is compared with Langdon’s (1967) algorithm and 
Thongchiew’s (2007) algorithm because these algorithms fall under the non-exchange 
restriction. The comparison over time computation between the new algorithm, Langdon’s 
(1967) algorithm and Thongchiew’s (2007) algorithm is given in Table 2. The results are given 
in milliseconds and all the algorithms are written in C language.

As can be observed from Table 2, the new algorithm is faster than Langdon’s (1967) 
algorithm and Thongchiew’s (2007) algorithm. At n = 9, the new algorithm runs the same as 
Langdon’s (1967), but almost twice as fast as Thongchiew’s(2007). In other words, Langdon’s 
algorithm runs two times slower than the new algorithm, and Thongchiew’s (2007) is the 
slowest among the three algorithms.
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TABLE 2 
Time Computation of Algorithms

n New algorithm Langdon’s (1967) algorithm Thongchiew’s (2007) algorithm
8 0 0 0
9 15 15 63
10 109 171 687
11 983 2012 7488
12 12839 26520 90106
13 173270 365213 1672510
14 2590946 5423443 22448205
15 41885652 85173825 246139962

CONCLUSION

A new approach to listing n! permutations that is based on recursive circular generated starter 
sets is proposed in this paper. Furthermore, this recursive circular algorithm is efficient as the 
starter sets can be generated without eliminating the equivalence starter sets, thus reducing 
computation time. 
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