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ABSTRACT
 The classical procedures of comparing two groups, such as t-test are, usually restricted with the assumptions 
of normality and equal variances.  When these assumptions are violated, the rates of the Type I errors of the 
independent samples t-test are affected, particularly when the sample sizes are small.  In this situation, the 
bootstrap procedure has an advantage over the parametric t-test.  In this study, the performances of the bootstrap 
procedure and the independent sample t-test were investigated.  The investigation focused on the power of 
both the test procedures to compare the two groups under different design specifications for normal and chi-
square distributions.  The results showed that the bootstrap procedure has a slight edge over the conventional 
t-test in term of the rate of achieving the benchmark level for both the distributions.  In fact, the bootstrap 
procedure consistently outperformed the conventional t-test across all the combinations of the test conditions.
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INTRODUCTION
The classical procedures of comparing two groups such as t-test are usually restricted by the 
assumptions of normality and equal variances.  Moreover, in the real world, these assumptions 
are not always fulfilled.  Over the years, many procedures arose to handle the violation of these 
assumptions.  Note that nonparametric procedures are viable alternatives that can be used when the 
distribution is not normal.  Meanwhile, robust hypothesis testing procedures, such as James (1951), 
Welch (1951) and also Alexander and Govern (1994), are some examples of the procedures that 
have been developed to handle the problem of unequal variances.

With the increase of computational power, the statistical technique has also improved 
consistently.  Computational intensive techniques have benefited from these and made a come back 
in terms of their usage.  Bootstrapping is one of the recently revived techniques used for making 
certain kinds of statistical inferences.  The essence of bootstrapping is the idea that, in the absence 
of any other knowledge about a population, the distribution of values found in a random sample 
of size n from the population is the best guide to the distribution in the population (Manly, 1997).  
In situation where classical test assumptions are not met, the bootstrap procedure offers a viable 
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alternative as it uses computational power to perform intricate calculation.  More importantly, the 
bootstrap procedure does not rely on a theoretical sampling distribution (such as central limits 
theorem that requires large samples) as in the classical tests.  Othman, Keselman, Padmanabhan, 
Wilcox and Fradette (2003) listed out a practical advantage of using the bootstrap procedure.  They 
noted that certain variations of the bootstrap procedure do not require the knowledge of the sampling 
distribution of the test statistic, and thereby, not requiring explicit expressions for standard errors 
of estimators.  This condition makes hypothesis testing quite flexible.

Meanwhile, Krishnamoorthy, Lu and Mathew (2007) made a comparison between the bootstrap 
procedure and the general F test, Welch test and James test.  The researchers suggested using the 
bootstrap method for the reason that it is the only procedure that performs satisfactorily, regardless 
of the sample sizes, values of the error variances, and the number of means being compared under 
unequal variances.

In the same vein, Higgins (2005) adopted and simplified the process of bootstrapping.  The 
bootstrap method relies on Monte Carlo random number generators to generate bootstrap samples.  
In addition to carrying out hypothesis testing with the test statistic of unknown sampling distribution, 
the bootstrap procedure is also capable of assessing the performance of statistical test in terms of 
Type I error and power.  Therefore, this facilitates the design of the new test procedure without 
resorting to proving them analytically first.  Moreover, the bootstrap procedure is also capable of 
conducting sensitivity analyses on the performance of known parametric, nonparametric or Monte 
Carlo based methods under usual and extreme operating conditions.  Hence, these sensitivity analyses 
are also comparative analyses if the analyses are performed on both the new and known procedures.

This study was conducted to evaluate the performance of the bootstrap method as compared 
to the classical pooled variance t-test in terms of their statistical power for the two groups.  These 
tests were evaluated at various combinations of test conditions (namely, sample sizes, variances 
ratios and underlying distributions).

DESIGN OF THE STUDY
For comparison purposes, this study considered unbalanced groups with the sample sizes of 5 and 
15 and as well as investigated the performance of the procedures under normal and chi-square 
distributions.  The total sample size was set to be equivalent to 20 so as to maintain the small sample 
size (for each sample size and both) because the effect of non-normality would when dealing with 
small sample size (i.e. less than 30).  In this study, the ratio of the group sample size (1:3) was to 
reflect the unbalanced design.  Other researchers also had their own preference, such as Lix and 
Keselman (1998) whereby they used a group sample size ratio of 1:2.  In order to examine the effect 
of distributional shapes on power value, this study used data from normal distribution as well as from 
skewed distribution.  Chi-square with three degrees of freedom has skewness of 1.63 and kurtosis 
4.00 was chosen to simulate a positively skewed distribution with a minimum at zero (Soong, 1981).

Meanwhile, the variance ratios used were 1:1 and 1:9.  For heterogeneous variances, the ratio 1:9 
was chosen as it reflects extreme variance heterogeneity.  Hess, Olejnik and Huberty (2001), in their 
study, considered any variance ratio larger than 1:8 as extreme variance heterogeneity.  Accordingly, 
this study sought to investigate how well both the tests performed under more extreme condition.  
These unequal variances were paired with unbalanced sample sizes positively and negatively.  
Positive pairing was done when the group with the smallest sample size was paired with the smallest 
variance while the group with the largest sample size was paired with the largest variance.  For the 
negative pairing, the group with the largest sample size was paired with the smallest variance and 
the group with the smallest sample size was paired with the largest variance.
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METHODS
This study was based on the simulated data generated by subroutine RANDGEN from SAS (1999).  
The nominal level of significance was set at a=0.05.  For each condition examined, 1000 data sets 
were generated and for the bootstrap procedure, 1000 more bootstrap samples were generated for 
each of the data set.  In the real world studies, the usual recommended bootstrap replicate is 100 and 
this was done with the trade-off between computational cost and accuracy.  Meanwhile, Pattengale, 
Alipour, Bininda-Emonds, Moret and Stamatakis (2010) recommended bootstrap replicates of 100 
to 500 range for the real world data where a practitioners would no longer have to enter a guess 
nor worry about the quality of estimates.  Most conservative criteria may for several thousand 
replicates which only reduce the effects of random sampling errors.  Wilcox (2005) stated that 
the choice of the number of bootstrap replicates has to be sufficiently large so that if the seed in 
the random number generator is altered, the same conclusions would essentially still be obtained.  
Chernick (2008) urged practitioners to choose the number of bootstrap replications that make the 
sampling variance sufficiently small so as to ensure that the bootstrap approximation is close to the 
actual bootstrap estimate.  He further suggested at least 1000 bootstrap replications in the case of 
confidence interval estimation and hypothesis testing problem.

The power of a test is the probability that a test will yield statistically significant results or 
reject the false null hypothesis.  It can be denoted as 1 – b.  As reported by Yin and Othman (2009), 
the power of a test depends on three factors, namely, significance criterion (a), sample size (n) and 
effect size (EF).  a, which is also known as Type I error, is positively related to power.  The power 
values increase as the standard for determining significance increases.  The sample size, n, is also 
positively related to power.  The larger the sample size, the higher the power value.  The effect size, 
EF, is the magnitude of the effect under alternate hypothesis.  The power values increase when the 
effect size increases.

For the two groups, the effect size index is the effect size that is to be detected.  Thus, the effect 
size index (d) is defined as:

d
1 2

v

n n
=

-

Where,
d = effect size index

1 2n n-  = population means
v  = the standard deviation of either population (if they are equal)/the smallest standard 

deviation (if they are unequal).

According to Cohen (1988), the effect size is considered as small when d = 0.2, medium when 
d = 0.5, and large when d = 0.8.  The effect size index is used to choose the values of population 
means for the true alternative hypothesis.  Assuming that μ1>μ2 and μ2=0, we can have a range 
of values to represent μ1.  In order to cover all the conditions, the value of the shift parameter can 
systematically varied from 0.5 to 7.5 with the increments of 0.5.  Table 1 represents the possible 
choices for μ1 and μ2 for all the conditions and methods.  Murphy and Myors (1998) noted that the 
power of a test is usually judged to be adequate if the value is 0.8 and above.  Fig. 1 outlines the 
steps to determine the power value for both the t-test and bootstrap procedure.

RESULTS AND DISCUSSION
The entries in Table 2 and Table 3 are power rates for the t-test and bootstrap procedure, respectively, 
on both the test distributions.  Similarly, Tables 4 and 5 show the power values of both the procedures 
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for the normal and chi-square distributions.  On the other hand, Fig. 2 and Fig. 3 displayed the 
power curves of the t-test and bootstrap procedure.  The results and discussion for the t-test method 
and bootstrap procedure are separately presented.

The t-test Method
Table 2 shows the power rates of the pooled variance t-test under normal and chi- square distributions.  
The bolded entries are power rates that are above the benchmark power rate of 0.80.  For a clear 
viewing, Fig. 2 displays the power curves of the pooled variance t-test under normal and chi-square 
distributions with all the variance ratios that have been considered.

Simulated 1000 data set 
using RANDGEN function

Induced the shift parameter

Bootstrap 1000 bootstrap sampleCompute the p-value using t-test, pt

Compute bootstrap p-value 
for each bootstrap sample, p*

p-value = (Number of p* < 0.05)

1000

Power = (Number of p-value < 0.05)

1000

Power = (Number of pt < 0.05)

1000

Fig. 1: A diagrammatic outline to determine the power values for the t-test and the 
bootstrap procedure

TABLE 1 
Possible choices of shift parameter for all conditions and methods

Group sample sizes Group variances Effect size Range for shift parameter

{5, 15} {1, 1}
.0 547
1 2n n- 0.5, 1, 1.5, …

{5, 15} {1, 9}
.1 449
1 2n n- 1.5, 3, 4.5, …

{5, 15} {9, 1}
.0 949
1 2n n- 1, 2, 3, …

Bootstrap difference 1 2n n- 1, 2, 3, …
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As shown in Table 2 and Fig. 2, the homogeneous variances produced higher power rates 
under normal distribution than the heterogeneous variances, whereas in terms of pairing, the 
negative pairing produced higher power rates than positive pairing.  The power rates of the 
pooled variance t-test behave similarly under the chi-square distribution, where the highest power 
rates are in homogeneous variances while in terms of pairing, the negative pairing is higher than 
positive.  Nonetheless, the performance of the t-test does not vary between the two distributions.  
The power rate reaches the benchmark point of 0.8 at almost the same level.  However, the chi-
square distribution achieved the benchmark rate at a lower shift parameter when the variances are 
negatively paired.

The Bootstrap Procedure
Table 3 and Fig. 3 show the power values and power curves for the bootstrap procedure, respectively.  
The bolded entries in Table 3 are power rates that exceed the benchmark power rate of 0.80.  The 
bootstrap procedure produces similar trends as that of the pooled variance t-test.  Under normal 
distribution, the high power rate was achieved the fastest in the presence of variance homogeneity, 
while the slowest was when the pairing of variance and sample size was positive.

For the chi-square distribution, once again just like in the pooled variance t-test, the results of 
power rates were found as not incredibly different with that of the normal distribution where groups 
with homogeneous variances attained the high power the fastest.  While in terms of pairing, the 
negative pairing reached the highest power earlier than the positive pairing.

When the two distributions were compared under normal distribution with homogeneous 
variances and positive pairing, the results showed that the bootstrap procedure reached the power 
of 0.80 much faster as compared to the chi-square distribution.  However, for the groups with the 
negative pairing, the performance of the bootstrap procedure under the chi-square distribution was 
shown to be better as compared to the normal distribution because at shift parameter = 2.5, the 
power is 0.81 whereas the power for normal distribution is just 0.765.

Comparative Study
For the comparative study, an attempt was done to determine which of the two procedures would 
be the fastest in term of achieving the benchmark power.  The detail of the comparative study is 
shown in Table 4 for the normal distribution and Table 5 for the chi-square distribution.

By comparison, the bootstrap procedure has a slight edge over the conventional t-test in term 
of the rate of achieving the benchmark level with the normal distribution.  The entries for the 
bootstrap procedures across various variance ratios exceeded the benchmark level relatively faster 
as compared to the t-test.  Similarly, with the chi-square distribution, the bootstrap procedure is 
capable of achieving a faster rate.  Conclusively, the bootstrap procedure consistently outperformed 
the conventional t-test across all the combinations of the test conditions.

CONCLUSIONS
The bootstrap procedure has a slight edge over the conventional t-test in terms of the rate of 
achieving the benchmark level for both the normal and chi-square distributions.  In particular, the 
bootstrap procedure consistently outperformed the conventional t-test across all the combinations 
of the test conditions.

Evidently, both the tests are capable of achieving the benchmark level at a faster rate in the 
situation of homogeneity of variances across distributions.  Similarly, they are sensitive to effect size 
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Fig. 2: Power curves for the pooled variance t-test

TABLE 2
Power values for the two sample t-test with pooled variances

Shift parameter
Normal Chi-square (3)

Var (1,1) Var (1,9) Var (9,1) Var (1,1) Var (1,9) Var (9,1)

0.5 0.165 0.010 0.241 0.171 0.059 0.201
1.0 0.464 0.034 0.327 0.451 0.104 0.268
1.5 0.780 0.091 0.430 0.789 0.193 0.388
2.0 0.953 0.205 0.595 0.930 0.310 0.578
2.5 0.992 0.350 0.692 0.989 0.457 0.763
3.0 1.000 0.580 0.788 0.997 0.609 0.884
3.5 1.000 0.736 0.875 0.999 0.713 0.956
4.0 1.000 0.856 0.946 1.000 0.800 0.995
4.5 1.000 0.940 0.967 1.000 0.855 0.999
5.0 1.000 0.984 0.981 1.000 0.916 1.000
5.5 1.000 0.993 0.992 1.000 0.953 1.000
6.0 1.000 0.999 0.999 1.000 0.973 1.000
6.5 1.000 1.000 1.000 1.000 0.976 1.000
7.0 1.000 1.000 1.000 1.000 0.989 1.000
7.5 1.000 1.000 1.000 1.000 0.994 1.000

Note: Values indicated in bold show power rate ≥ 0.80.
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Fig. 3: Power curves for the bootstrap procedure

TABLE 3
Power values for the bootstrap procedure

Shift parameter
Normal Chi-square (3)

Var (1,1) Var (1,9) Var (9,1) Var (1,1) Var (1,9) Var (9,1)

0.5 0.257 0.053 0.237 0.240 0.077 0.168
1.0 0.612 0.107 0.398 0.581 0.171 0.285
1.5 0.869 0.215 0.542 0.857 0.307 0.459
2.0 0.979 0.419 0.685 0.980 0.436 0.627
2.5 1.000 0.616 0.765 0.997 0.609 0.810
3.0 1.000 0.782 0.847 0.997 0.712 0.941
3.5 1.000 0.909 0.910 1.000 0.843 0.984
4.0 1.000 0.964 0.955 1.000 0.880 0.993
4.5 1.000 0.990 0.979 1.000 0.932 1.000
5.0 1.000 0.996 0.989 1.000 0.961 1.000
5.5 1.000 0.999 0.999 1.000 0.981 1.000
6.0 1.000 1.000 1.000 1.000 0.987 1.000
6.5 1.000 1.000 1.000 1.000 0.992 1.000
7.0 1.000 1.000 1.000 1.000 0.999 1.000
7.5 1.000 1.000 1.000 1.000 0.999 1.000

Note: Values indicated in bold show power rate ≥ 0.80.
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TABLE 4
Power values for the normal distribution

Shift parameter
Var (1,1) Var (1,9) Var (9,1)

t-test Bootstrap t-test Bootstrap t-test Bootstrap

0.5 0.165 0.257 0.010 0.053 0.241 0.237
1.0 0.464 0.612 0.034 0.107 0.327 0.398
1.5 0.780 0.869 0.091 0.215 0.430 0.542
2.0 0.953 0.979 0.205 0.419 0.595 0.685
2.5 0.992 1.000 0.350 0.616 0.692 0.765
3.0 1.000 1.000 0.580 0.782 0.788 0.847
3.5 1.000 1.000 0.736 0.909 0.875 0.910
4.0 1.000 1.000 0.856 0.964 0.946 0.955
4.5 1.000 1.000 0.940 0.990 0.967 0.979
5.0 1.000 1.000 0.984 0.996 0.981 0.989
5.5 1.000 1.000 0.993 0.999 0.992 0.999
6.0 1.000 1.000 0.999 1.000 0.999 1.000
6.5 1.000 1.000 1.000 1.000 1.000 1.000
7.0 1.000 1.000 1.000 1.000 1.000 1.000
7.5 1.000 1.000 1.000 1.000 1.000 1.000

Note: Values indicated in bold show power rate ≥ 0.80.

TABLE 5
Power Values for the Chi-Square Distribution

Shift parameter Var (1,1) Var (1,9) Var (9,1)

t-test Bootstrap t-test Bootstrap t-test Bootstrap

0.5 0.171 0.240 0.059 0.077 0.201 0.168
1.0 0.451 0.581 0.104 0.171 0.268 0.285
1.5 0.789 0.857 0.193 0.307 0.388 0.459
2.0 0.930 0.980 0.310 0.436 0.578 0.627
2.5 0.989 0.997 0.457 0.609 0.763 0.810
3.0 0.997 0.997 0.609 0.712 0.884 0.941
3.5 0.999 1.000 0.713 0.843 0.956 0.984
4.0 1.000 1.000 0.800 0.880 0.995 0.993
4.5 1.000 1.000 0.855 0.932 0.999 1.000
5.0 1.000 1.000 0.916 0.961 1.000 1.000
5.5 1.000 1.000 0.953 0.981 1.000 1.000
6.0 1.000 1.000 0.973 0.987 1.000 1.000
6.5 1.000 1.000 0.976 0.992 1.000 1.000
7.0 1.000 1.000 0.989 0.999 1.000 1.000
7.5 1.000 1.000 0.994 0.999 1.000 1.000

Note: Values indicated in bold show power rate ≥ 0.80.
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in this situation.  Conversely, both the tests produced lower rate when large variance was associated 
with the larger sample, signifying a low sensitivity to effect size.  Despite the slight difference in 
the rate, both the t-test and bootstrap procedures produced a consistent power performance across 
the two distributions.  For each test, the rates of achieving the benchmark level were found to be 
similar for both the normal and chi-square distributions, but the bootstrap procedure achieved it 
at a faster rate.
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