

UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF BIOSENSOR PROBE FOR THE DETECTION OF MALACHITE GREEN AND LEUCO-MALACHITE GREEN FOR APPLICATION IN FISHERY INDUSTRY

NURUL HIDAYAH BINTI AHMAD PUAT

FSTM 2014 7

DEVELOPMENT OF BIOSENSOR PROBE FOR THE DETECTION OF MALACHITE GREEN AND LEUCO-MALACHITE GREEN FOR APPLICATION IN FISHERY INDUSTRY

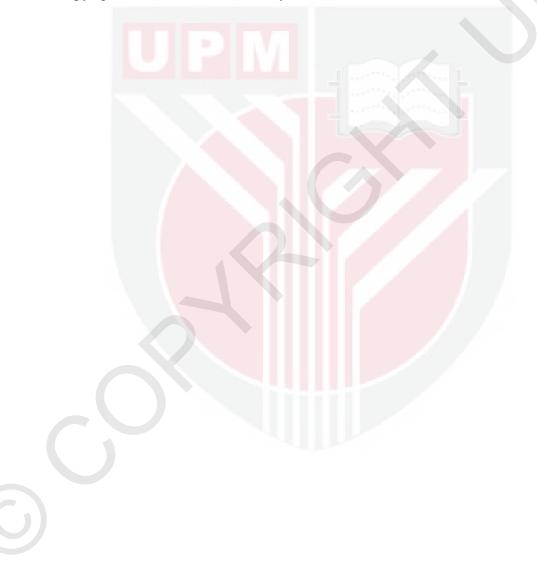
NURUL HIDAYAH BINTI AHMAD PUAT

MASTER OF SCIENCE UNIVERSITI PUTRA MALAYSIA

DEVELOPMENT OF BIOSENSOR PROBE FOR THE DETECTION OF MALACHITE GREEN AND LEUCO-MALACHITE GREEN FOR APPLICATION IN FISHERY INDUSTRY

By

NURUL HIDAYAH BINTI AHMAD PUAT


Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

December 2013

COPYRIGHT

All material contained within this thesis, including without limitation text, logos, icons, photographs and all other artwork, is copyright material of Universiti Putra Malaysia unless otherwise stated. Use may be made of any material contained within the thesis for non-commercial purposes from the copyright holder. Commercial use of material may only be made with the express, prior, written permission of Universiti Putra Malaysia.

Copyright © Universiti Putra Malaysia

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science.

DEVELOPMENT OF BIOSENSOR PROBE FOR THE DETECTION OF MALACHITE GREEN AND LEUCO-MALACHITE GREEN FOR APPLICATION IN FISHERY INDUSTRY

By

NURUL HIDAYAH BINTI AHMAD PUAT

December 2013

Chairperson: Professor Fatimah Abu Bakar, PhD Faculty: Science and Food Technology

The use of Malachite Green (MG) as an anti-fungal and anti-bacterial in the aquaculture industry has obtained attention in food safety. MG and its metabolite Leuco-Malachite Green (LMG) are highly toxic to aquatic environment and harmful to human health through daily consumption and it becomes more dangerous when accumulated in fish tissues. At present, the minimum required performance limits (MRPLs) for total MG (MG and LMG) concentration is 2 μ gkg⁻¹ or 2 ppb. Hence, the simple, rapid, sensitive and portable biosensor is really needed.

The aim of this research is to study the chemical inhibition of Butyrylcholinesterase enzyme (BuChE) by total MG in the presence of 0.3 mM Butyrylthiocholine iodide substrate (BTCi) for MG biosensor development. The MG biosensor has developed for total MG detection in fishes especially the tilapia and has validated by using the LC-MS/MS method. This electrochemical study has done by using screen-printed carbon electrode (SPCE) and the inhibition study has done by using free and immobilized enzyme. Then, it has characterized and analyzed using cyclic voltammetry (CV) and chrono-amperometry (CM). The supporting electrolyte, pH, set potential, scan rate and response range includes enzyme loading, polymer concentration, incubation and response time of the MG biosensor has optimized electrochemically. Meanwhile, the reproducibility, repeatability, operational stability and storage stability included cross reactivity has carried out. Finally, the developed MG biosensor method was validated with the LC-MS/MS method using real fish samples including the recovery study.

In this study, 4UmL⁻¹ BuChE enzyme (C1057) has used and the CV analysis was carried out as a preliminary study. The reproducibility of the SPCE was characterized electrochemically against potassium hexacyanoferrate (II) trihydrate and 93.65 % active surface areas of carbon working electrode were achieved. BuChE enzyme has incorporated within 0.08M pyrrole monomer during the electro-polymerization process at 0.1 V amperometrically for 20 minutes, which enzyme has entrapped within the thin films of polypyrrole (PPy). The total MG (MG and LMG) has determined by measuring

the current using amperometric technique at 0.4 V for 100 s using 0.1 M phosphate buffer at pH 8.0. This analysis needs five minutes of incubation time for enzyme-substrate reaction and inhibition before measurement, and it may get up to 78 % inhibition at 2 ppb total MG.

A linear standard curve of total MG has developed (0.25 ppb to 10 ppb) based on the current measurement (μ A) using standard solution (Y = -0.9113x + 10.84, R² = 0.9445), which has good reproducibility and operational stability until five measurements. Instead of that, the enzyme activity has reduced (repeatability) slowly after the third measurement. However, the MG biosensor probe is able to re-use after treated with the pyridine-2-aldomine (PAM-2) activator. The shelf life of the MG biosensor took more than six months with 20 % protein or enzyme loss. The total MG also showed the higher inhibition (48 %) at 2 ppb compared to other triphenylmethane dyes. This MG biosensor method has validated using the LC-MS/MS method with a regression value of 0.9262 (correlation graph) upon ten unknown samples with recoveries valuing more than 60 % of spiked sample.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

PEMBANGUNAN BIOPENDERIA PENGESAN UNTUK TUJUAN PENGESANAN MALAKIT HIJAU DAN LEUKO-MALAKIT HIJAU UNTUK APLIKASI DALAM INDUSTRI PERIKANAN

Oleh

NURUL HIDAYAH BINTI AHMAD PUAT Disember 2013

Pengerusi: Professor Fatimah Abu Bakar, PhD Fakulti: Sains dan Teknologi Makanan

Penggunaan 'Malachite Green' (MG) sebagai anti-kulat dan anti-bakteria di dalam industri perikanan telah mendapat perhatian dalam keselamatan makanan. MG dan metabolit 'Leuco-Malachite Green' (LMG) adalah sangat toksik kepada persekitaran akuatik dan berbahaya kepada kesihatan manusia melalui penggunaan harian dan ia menjadi lebih berbahaya apabila terkumpul di dalam tisu ikan. Pada masa ini, had prestasi minimum yang diperlukan (MRPLs) bagi kepekatan keseluruhan MG (MG dan LMG) adalah 2 μ gkg⁻¹ atau 2 ppb. Oleh itu, biopenderia yang mudah, cepat, sensitif dan mudah alih adalah benar-benar diperlukan.

Matlamat penyelidikan ini adalah untuk mengkaji perencatan kimia enzim 'Butyrylcholinesterase' (BuChE) oleh keseluruhan MG dengan kehadiran 0.3 mM 'Butyrylthiocholine' substrat (BTCi) untuk pembangunan biopenderia MG. Biopenderia MG ini dibangunkan untuk pengesanan keseluruhan MG dalam ikan terutama ikan tilapia dan ia akan disahkan dengan menggunakan kaedah kromatografi cecair-seiring spektrometri jisim (LC-MS/MS). Kajian elektrokimia ini telah dijalankan menggunakan elektrod bercetak skrin karbon (SPCE) dan kajian perencatan telah dijalankan menggunakan enzim bebas dan pegun. Ia dicirikan dan dianalisis masing-masing dengan menggunakan kaedah kitar voltammetri (CV) dan chrono-amperometri (CM). Elektrolit sokongan, pH, set keupayaan, kadar imbasan dan julat tindak balas termasuk muatan enzim, kepekatan polimer, masa inkubasi dan tindak balas biopenderia MG telah dioptimumkan secara electrokimia. Kemudian, ia telah dicirikan dalam segi kebolehhasilan, kebolehulangan, kestabilan operasi dan penyimpanan termasuk kereaktifan silang. Akhirnya, kaedah biopenderia MG yang telah berjaya dibangunkan ini disahkan dengan kaedah LC-MS/MS menggunakan sampel ikan sebenar termasuk kajian mendapatkan semula.

Dalam kajian ini, 4 UmL⁻¹ enzim BuChE (C1057) telah digunakan dan analisis CV telah dijalankan sebagai satu kajian awal. Kebolehhasilan SPCE telah dicirikan secara

elecktrokimia terhadap 'potassium hexacyanoferrate (II) trihydrate' dan 93.65 % kawasan aktif permukaan elektrod karbon kerja telah dicapai. BuChE telah digabungkan dalam 0.08 M 'pyrrole monomer' semasa proses elekto-pempolimeran pada 0.1 V secara amperometri selama 20 minit, yang mana enzim telah terperangkap dalam lapisan nipis filem 'polypyrrole' (PPy). Keseluruhan MG telah ditentukan dengan mengukur arus menggunakan teknik amperometri pada 0.4 V selama 100 saat menggunakan 0.1 M penimbal fosfat pada pH 8.0. Analisis ini memerlukan lima minit masa pengeraman bagi tindak balas enzim-substrat dan perencatan sebelum pengukuran, dan ia boleh mencapai sehingga 78 % perencatan pada kepekatan 2 ppb keseluruhan MG.

Satu lengkung linear piawai keseluruhan MG telah dibangunkan (0.25 ppb hingga 10 ppb) berdasarkan pengukuran arus elektrik (μ A) menggunakan larutan piawai (Y = -0.9113x + 10.84, R² = 0.9445), yang mana mempunyai kebolehulangan yang baik dan kestabilan operasi sehingga lima kali pengukuran. Sebaliknya, aktiviti enzim akan berkurang (kebolehulangan) secara perlahan-lahan selepas bacaan ketiga. Walaubagaimanapun, siasatan biopenderia MG boleh digunakan semula selepas dirawat dengan pengaktif 'pyridine-2-aldomine' (PAM-2). Jangka hayat biopenderia MG adalah lebih daripada enam bulan dengan kehilangan 20 % protein atau enzim. Keseluruhan MG juga menunjukkan perencatan yang tinggi (48 %) pada kepekatan 2 ppb berbanding pewarna 'triphenylmethane' lain. Kaedah biopenderia MG telah disahkan dengan menggunakan kaedah LC-MS/MS dengan nilai regrasi 0.9262 (graf korelasi) terhadap sepuluh sampel yang tidak diketahui dengan nilai dapatan semula lebih daripada 60 % 'spiked' sampel.

ACKNOWLEDGEMENTS

In the name of Allah, the most gracious and the most merciful

First and foremost, I would like to convey my deepest gratitude to my beloved supervisor, Professor Dr. Fatimah Abu Bakar for her advises, guidance and continuous encouragement throughout my studies. An utmost appreciation to my co-supervisors, Dr. Faridah Salam and Dr. Nor Ainy Mahyudin whom have shared many thoughts, recommendations and expertise generously which is enabling me to continue and complete this piece of work successfully and as stepping stone enter into research career.

Besides, I would like to express hearting thanks to the deputy of Bio-diagnostic and Biosafety Programme of Biotechnology Research Centre of MARDI, Dr. Zamri Ishak and my Immunology's lab-mates, Dr. Azura, Mrs. Gayah and Mrs. Hazana, my colleagues from Biochemistry lab, Mrs. Nor Azlina and Mr. Shah Aidil, my dearest friends at Faculty of Science and Food Technology (UPM), Dr. Zukhuruf Zaman, Mrs. Diana, La Seye, Selvi and others who is involving in this project either indirect or direct for their valuable helps, supports and astonishing friendship.

Furthermore, I would like to thanks to my collaborators from Fishery Research Institute, Batu Maung, Pulau Pinang, Mr. Othman, Mr. Ismail, Mr. Fa'azaz and others which provides a tilapia fish sample and analysis of sample using LC-MS/MS. To my precious parents, Ahmad Puat Bin Hassan and Faridah Binti Aran, my younger sister, Siti Nurfarhana and my beloved husband, Mohd Ridzuan Bin Ramlan, thanks for their unlimited love, supports and become inspiration to me. I wish for their health, longevity and happiness and for that may Allah bless our life. I certify that a Thesis Examination Committee has met on, (17 December 2013) to conduct the final examination of Nurul Hidayah Binti Ahmad Puat on her thesis entitled "Development of Biosensor Probe for the Detection of Malachite Green and Leuco-Malachite Green for Application in Fishery Industry" in accordance with the Universities and University Colleges Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U. (A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Member of the Thesis Examination Committee were as follows:

Yaya Rukayadi, PhD

Associate Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Chairman)

Son Radu, PhD

Professor Faculty of Food Science and Technology Universiti Putra Malaysia (Internal Examiner)

Nor Azah Binti Yusof, PhD

Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Zamri Ishak, PhD

Research Officer Special Grade C Malaysian Agricultural Research and Development Institute (MARDI) Malaysia (External Examiner)

NORITAH OMAR, PhD

Associate Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date: 21 April 2014

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Fatimah Abu Bakar, PhD

Professor Faculty Science and Food Technology Universiti Putra Malaysia (Chairman)

Nor Ainy Mahyudin, PhD Associate Professor Faculty Science and Food Technology Universiti Putra Malaysia (Member)

Faridah Salam, PhD Principle Research Officer Biotechnology Research Centre Malaysian Agricultural Research and Development Institute (Member)

BUJANG BIN KIM HUAT, PhD

Professor and Dean School Of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

Declaration by graduate student

I hereby confirm that:

- This thesis is my original work;
- Quotations, illustrations and citations have been duly referenced;
- This thesis has not been submitted previously or concurrently for any other degree at any other institutions;
- Intellectual property from the thesis and copyright of thesis are fully-owned by Universiti Putra Malaysia, as according to the Universiti Putra Malaysia (Research) Rules 2012;
- Written permission must be obtained from supervisor and the office of Deputy Vice-Chancellor (Research and Innovation) before thesis is published in book form;
- There is no plagiarism of data falsification/fabrication in the thesis, and scholarly integrity is upheld as according to the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) and the Universiti Putra Malaysia (Research) Rules 2012. The thesis has undergone plagiarism detection software.

Signature: ___

Date: ____

Name and Matric No.: Nurul Hidayah Binti Ahmad Puat GS25832

DECLARATION

Declaration by Members of Supervisory Committee

This is to confirm that:

- The research conducted and the writing of this thesis was under our supervision;
- Supervision responsibilities as stated in the Universiti Putra Malaysia (Graduate Studies) Rules 2003 (Revision 2012-2013) are adhered to.

Signature: ______ Name of Chairman of Supervisory Professor Fatimah Committee: Abu Bakar, PhD Signature: Name of Member of Supervisory Committee: Nor Ainy Mahyudin, PhD

Signature: ______ Name of Member of Supervisory Committee: Faridah Salam, PhD

TABLE OF CONTENTS

		Page
ABSTRACT		1
ABSTRAK	1	iii
ACKNOWLEDGEMENTS		V.
APPROVAL		vi
DECLARATION		vii
LIST OF TABLES		XVI
LIST OF FIGURES		xvii
LIST OF ABBREVIATION	NS	XX
CHAPTER		
1 INTRODUCTION		1
2 LITERATURE REV	VIEW	
2.1	Malachite Green	4
	2.1.1 Background	4
	2.1.2 Toxicity of Malachite Green	6
	2.1.3 Applications of Malachite Green	8
	2.1.4 Role of Malachite Green in Fishery	9
	Industry	
	2.1.5 Regulation and Laws for using Malachite	11
	Green in Fishery Industry	
	2.1.6 Conventional Method for Determination	24
	of Total Malachite Green in Fish	
2.2	Biosensor	17
	2.2.1 Concept of Biosensor	17
	2.2.2 Amperometric Technique	19
	2.2.3 Applications of Biosensors in Food and Malachite Green Determination	22
2.3	Enzyme	25
2.5	2.3.1 Butyrylcholinesterase	25
	2.3.2 Immobilization of Enzyme	28
2.4	Bio-recognition Coating	30
	2.4.1 Characteristics and Role of Polypyrrole	30
	(PPy) Polymer	
3 MATERIAL	S AND METHODS	
3.1	Chemicals and Biochemical Reagents	34
3.2	Instrumentation	35
	3.2.1 Potentiostat	35
	3.2.2 Spectrophotometer	36
	3.2.3 Homogenizer	36
	3.2.4 Refrigerated Centrifuged	36
	3.2.5 Microplate Reader	37
	3.2.6 Rotavapor	37

3.2.6 Rotavapor

	3.2.7	Scanning Electron Microscope	37
3.3	Prepara	ation of Reagents and Bio-chemicals	37
	3.3.1	Preparation of Phosphate Buffer Solution	37
	3.3.2	Preparation of Potassium Chloride Buffer	37
	3.3.3	Preparation of Malachite Green and	38
		Leuco-Malachite Green Standard Solution	
	3.3.4	Preparation of Butyrylcholinesterase	38
		Enzyme	
	3.3.5	Preparation of Butyrylthiocholine iodide	38
		Substrate	
	3.3.6	Preparation of Methylene Blue (MB ⁺),	38
		Nile Blue A (NB ^{A+}) and Pararosanaline	
		(PR ⁺) Standard Solution	
	3.3.7	Preparation of Pyrrole Solution	39
	3.3.8	Preparation of Sodium Hydroxide	39
		Solution	
	3.3.9	Preparation of Potassium	39
		Hexacyanoferrate (II) Trihydrate	
	3.3.10	Preparation of p-Toluene Sulphonic Acid	39
		Solution	
	3.3.11	Preparation of Acetate Buffer	39
	3.3.12	Preparation of Ethanol	39
	3.3.13	Preparation of Hydroxylamine	40
		Hydrochloride Solution	
	3.3.14	Preparation of Formic Acid Solution	40
	3.3.15	Preparation of Methanol	40
3.4	Fabrica	ation of Enzyme for Malachite	40
	Green	Biosensor Development	
	3.4.1	Development of Electrochemical System	40
	3.4.2	Immobilization of Enzyme in Polypyrrole	40
	3.4.3	General procedure for Electrochemical	41
		analysis of Malachite Green based on	
		Enzymatic Approach	
3.5	Electro	ochemical Characterization of SPCE	41
	3.5.1	CV Analysis using Potassium	41
		Hexacyanoferrate (II) Trihydrate	
	3.5.2	CV Analysis for all related analytical	41
		reagents	
3.6	Electro	ochemical Characterization of Enzyme	42
	3.6.1	Selection of Butyrylcholinesterase Enzyme	42
	3.6.2	Butyrylcholinesterase Enzyme Assay	42
3.7	Charac	terization of Malachite Green Biosensor	42
	using f	ree Enzyme	
	3.7.1	Effect of presence Malachite Green	42
	3.7.2	Effect of presence Butyrylthiocholine	43
		Iodide Substrate (BTCi)	
	3.7.3	Baseline Study	43

	3.7.4	Effect of different Supporting Electrolyte	43
	3.7.5	Effect of different Set Potential	43
	3.7.6	Effect of Scan Rate	44
	3.7.7	Effect of Multiple Cycling	44
	3.7.8	Effect of pH	44
	3.7.9	Response range of Malachite Green	44
		Biosensor	
	3.7.10	Cross Reactivity Study	44
	3.7.11	Calibration Curve of Malachite Green	45
3.8	Charac	eterization of Malachite Green Biosensor	45
	using i	mmobilized Enzyme	
	3.8.1	Enzyme Immobilization	45
	3.8.2	Effect of Pyrrole Concentration	45
	3.8.3	Set Potential Scanning using	45
		Immobilized Enzyme	
	3.8.4	pH of Malachite Green Biosensor	46
	3.8.5	Enzyme Loading	46
	3.8.6	Effect of Incubation Time	46
	3.8.7	Response Time of Malachite Green	46
		Biosensor	
	3.8.8	Calibration Curve of Malachite Green	46
	3.8.9	Reproducibility of Malachite Green	47
		Biosensor	
	3.8.10	Repeatability of Malachite Green	47
		Biosensor	
	3.8.11	Operational Stability of Malachite Green	47
		Biosensor	
	3.8.12	Stability of Malachite Green Biosensor	47
		Probe	
	3.8.13	Cross-Reactivity Study using Immobilized	47
		Enzyme	
3.9	Valida	tion of Malachite Green Biosensor	48
		Preparation of Sample for Biosensor	48
		Analysis	
	3.9.2	Procedure for Biosensor Analysis	48
	3.9.3	Preparation of Sample for LC-MS/MS	48
		Analysis	
	3.9.4	Procedure for Malachite Green	49
		Determination using LC-MS/MS Method	
	3.9.5	Determination of Malachite Green in Real	49
		Fish Sample using Biosensors Method	
	3.9.6	Determination of Malachite Green in Real	49
	2.2.0	Fish Sample using LC-MS/MS Method	.,
	3.9.7	Recovery Study of Malachite Green in	49
		Tilapia Fish Sample	.,
		· · · · · · · · · · · · · · · · · · ·	

C

3.9.8 Correlation of Malachite Green 50 Determination between Biosensors Method and LC-MS/MS Method

RESULTS AND DISCUSSION

ILDU				
	4.1	Prelim	inary Study of Biosensor	51
4.1.1			Cyclic Voltammetric Analysis of Screen	51
			Printed Carbon Electrode using Potassium	
			Hexacyanoferrate (II) Trihydrate	
		4.1.2	Characteristics of Screen Printed Carbon	52
			Electrode by Cyclic Voltammetric Analysis	
			using Potassium Hexacyanoferrate (II)	
			Trihydrate	
		4.1.3	Selection of Butyrylcholineserase Enzyme	53
			From different Sources	
		4.1.4	Enzyme Assay of Butyrylcholinesterase	54
		4.1.5	Characterization of Malachite Green	56
			Biosensor using free Enzyme	00
		4.1.6	The Redox Reaction of Malachite Green	58
			using free and Immobilized Enzyme	
	4.2	Inhibit	ion Study of Butyrylcholinesterase Enzyme	59
		4.2.1	Inhibition of Butyrylcholinesterase Enzyme	59
			by Malachite Green	0,
		4.2.2	Baseline Study	62
		4.2.3	Effect of Supporting Electrolyte	63
	4.3		cterizations of Malachite Green Biosensor	65
		4.3.1	Effect of Scan Rate	65
		4.3.2	Effect of Multiple Cycling	66
		4.3.3	Effect of pH	67
		4.3.4	Study of Response range using free	68
			Enzyme	
		4.3.5	Cross Reactivity Study using free Enzyme	69
		4.3.6	Set Potential Scanning using free Enzyme	70
	4.4	Optim	ization of Immobilized Enzyme for	71
Malach		Malac	hite Green Biosensor	
		4.4.1	Concentration of Pyrrole Polymer	71
		4.4.2	Immobilization of Enzyme	72
		4.4.3	Effect of Immobilization Enzyme	75
			with Polypyyrole	
		4.4.4	pH of Total Malachite Green Biosensor	76
		4.4.5	Effect of Enzyme Loading	77
		4.4.6	Set Potential Scanning using Immobilized	79
			Enzyme	
		4.4.7	Effect of Incubation Time	79
	4.5		opment of Malachite Green Biosensor	80
		4.5.1	Response Time	80
		4.5.2	Calibration Curve of Malachite Green	81

		 Standard Solution using free Enzyme by Cyclic Voltammetric analysis 4.5.3 Calibration Curve of Malachite Green Standard Solution using Immobilized 	82
	4.6	Enzyme via Chrono Amperometry (CM) analysis Characterizations of Developed Malachite Green Biosensor 4.6.1 Reproducibility of Malachite Green Biosensor 4.6.2 Repeatability of Malachite Green	84 84 85
		4.6.2 Repeatability of Malachite Green Biosensor4.6.3 Operational Stability of Malachite Green	85 86
		4.6.4 Biosensor4.6.4 Storage Stability of Malachite Green	87
		4.6.5 Cross Reactivity Study of Triphenylmethane Dyes	88
	4.7	Validation and Recovery Study of Malachite Green Biosensor	90
		 4.7.1 Malachite Green Biosensor 4.7.2 Liquid Chromatography – Tandem Mass Spectrometry (LC-MS/MS) Method 	90 91
		4.7.3 Recovery Study of Malachite Green Residue in Real Fish Sample	92
	4.8	Correlation between Developed Biosensor Method with LC-MS/MS Method	95
5		ON AND RECOMMENDATIONS RE RESEARCH	97
	REFERENC	ES/BIBLIOGRAPHY	99
	APPENDICI	ES	112
	BIODATA C	DF STUDENT	140
	PUBLICATI	IONS	141