
Pertanika J. Sci. & Techno!. 3(2): 361-381 (1995)
ISSN:OI28-7680

© Penerbit Universiti Pertanian Malaysia

Transformation of Sequential Programs
into Parallel Forms

Md Yazid Mohd Saman
Department of Computer Science

Faculty of Science and Enviromental Studies
UPM 43400 Serdang, Selangor, Malaysia

yazid@cs.upm. my

Received 24 November 1993

ABSTRAK
Salah satu tugas yang perlu dilakukan oleh pengaturcara ketika menulis
aturcara selari ialah mengenal pasti bahagian yang akan dilaksanakan secara
selari. Proses ini memakan masa dan se1alu memberikan kesalahan. Satu cara
lain ialah pengaturcara menulis aturcara jujukan terlebih dahulu dan ini akan
diterjemahkan ke dalam bentuk selari oleh pengkompil selari. Lingkaran
dalam aturcara merupakan bahagian yang mudah untuk diterjemahkan kepada
bentuk selari. Kertaskexja ini membincangkan teknik penterjemahan yang
boleh dilaksanakan ke atas aturcara jujukan terutama lingkaran, untuk
dilaksanakan secara selari. Teknik ini berdasarkan set Bernstein.

ABSTRACT
One of the main tasks of a programmer when writing parallel programs is to
identify the parts that are to be executed in parallel. This process is very time­
consuming and error prone. As an alternative, one can write its sequential
version and then transform it into the parallel form by a parallelizing compiler.
The loops in the sequential programs offer the best opportunities for parallel­
ism. This paper presents the transformation techniques that can be applied to

sequential programs, especially the loops, in order to parallelize them. These
techniques are based on the Bernstein sets.

Keywords: sequential programs, parallelism, transformation, Bernstein sets

INTRODUCTION

Programming for parallel computers is not as easy as writing the equivalent
sequential programs. One of the programmer's main tasks is to identify
parts of the programs that are to be executed in parallel. One way to
develop a parallel program is to write its sequential version in the initial
stage. This program is then transformed into its parallel form by a sophis­
ticated software tool such as the parallelizing compiler. Some researchers
have developed complete parallel programming environments such as the
Parafrase (Polychronopoulos 1988) and RAP (Kuck et at. 1984).

Md Yazid Mohd Saman

The parts of a sequential program which offer the best opportunities
for parallelism are the loops (Allen 1988; Banerjee 1988; Wolfe 1989; Md
Yazid 1993a). The iterations in a. loop can be parallelized if all of them
are independent, i.e. there is no data dependence between them. Inter­
iteration data dependences are usually caused by references by an iteration
to array elements modified by others. In the case of scalar variables in the
loops, data dependences occur if they are involved in store operations in
the different iterations.

To detect any data dependences in a loop, the statements in its body
have to be analysed in the data dependence analysis (Md Yazid 1993a). In
order to execute the iterations with data dependences concurrently, the
loops have to be modified to eliminate those dependences. In cases where
data dependences cannot be removed, synchronization statements are
inserted in the loops. This paper proposes techniques that can be applied
to sequential programs in order to transform and execute them in
parallel. These techniques are based on the Bernstein method consisting
of the Bernstein sets (BSs) , the Bernstein tests (BTs) and the Bernstein
loop tests (BLTs) (Bernstein 1966; Williams 1978; Md Yazid 1993a). This
paper shows how information provided by the BSs and the results of the
BLTs can be used in making the decision for the transformation process.

PARALLELlZATION OF PROGRAMS

Loop transformation has been a major focus in the parallelization of
sequential programs and before any transformation can be performed,
extensive analysis has to be carried out to determine the data dependence
between the iterations. One common method to perform this analysis is
to develop the data dependence graph (DDG). The DDG is then used to
decide on which transformation techniques are to be applied. Most
researchers use this technique (Kuck et al. 1984; Padua and Wolfe 1986;
Wolfe 1989). The other method bases the analysis on the Bernstein sets
(Bernstein 1966; Md Yazid 1993a, 1993b). In the parallelization of
sequential programs, apart from modifying the codes to eliminate data
dependences, insertion of proper synchronization constructs may also be
carried out so that the iterations of the loops can be executed in parallel.
There are two types of loop transformations: parallelization and vectorization
(Padua and Wolfe 1986; Polychronopoulos 1988; Zima and Chapman
1990). Vectorization is a process of transforming loops into vector codes
for vector computers. On the other hand, parallelization is a transforma­
tion process mainly targeted for shared-memory parallel machines. In
this paper, the BSs and the BLTs become the bases for the program
transformations.

362 Pertanika J. Sci. & TechnoL VoL 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

DEFINITIONS OF FETCH AND STORE DIRECTIONS

The BLTs are tests to determine parallelism in loops; their application will
produce results that can be classified as the forward/store (FS), forward/
fetch (FF) , backward/store (BS) or backward/fetch (BF). These defini­
tions will be used to decide on how the loops can be transformed. The
basic definitions of BSs and the BLTs are given in the appendix and their
detailed discussions can be found alsewhere (Bernstein 1966; Williams
1978; Md Yazid 1993a).

Results of the Test (XYZi n XYZj)

This test detects any dependences caused by simultaneous store
operations, so the letter X will be appended to each classification.

(i) X-forward/store (XFS) - if the forward dependence involves a store
as for the array a below:

a[i] := p;
a[i+l] := q;

OR a[i+l] := q;
a[i] := p;

(ii) X-backward/store (XBS) - if the backward dependence involves a
store as for the array a below:

a[i-l] := q;
a[i] := p;

OR a[i] := q;
a[i-l] := p;

Results of the Test (XYZi n XYZj)

This test detects any data dependences due to fetch first and store later
operations (that is Y) or dependences due to store first and fetch later
operations (that is Z). Hence a letter Yor Z will be appended to each
classification.

(i) Y and Z-forward/store (YFS and ZFS) if the forward dependence
involves a store as for the array a below. The values fetched are new
values.

YFS
P := a[i];
a[i+l] := q;

ZFS
a[i+l] := p;
q := a[i];

Pertanika J. Sci. & TechnoL Vol. 3 No.2, 1995 363

Md Yazid Mohd Saman

(ii) Y and Z-forward/fetch (YFF and ZFF) if the forward dependence
involves a fetch as for the array a below. The values fetched are old
values.

YFF
q :== a[i+I];
a[i] :== p;

ZFF
a[i] :== p;
q :== a[i+I];

(iii) Yand Z-backward/store (YBS and ZBS) if the backward dependence
involves a store as for the array a below. The values fetched are old
values.

YBS
P :== a[i];
a[i-I] :== p;

ZBS
a[i-I] :== p;
q :== a[i];

(iv) Yand Z-backward/fetch (YBF and ZBF) if the backward dependence
involves a fetch as for the array a below. The values fetched are new
values.

YBF
q :== a[i-I];
a [i] :== p;

ZBF
a[i] :== p;
q :== a[i-I];

BS-BASED TRANSFORMATIONS

In this section, transformation methods based on the contents of the BSs are
discussed. Consider the loop and its corresponding BSs shown in Fig. 1.
The variable c is involved in store and fetch operations and this causes data
dependence between iterations. Undefined results may be stored or fetched
if the loop is parallelized. Fig. 1(b) shows that the variable c is a member of
Z set. If the iterations are to be executed in parallel, care must be taken
to ensure that the value of c is properly maintained.

for i:==1 to n do
begin

c :== a[i] + a[i+I] + a[i+2];
if c > m[i] then m[i] :== c;

end;

(a) a loop with scalar data dependences

364 Pertanika J. Sci. & TechnoL VoL 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

w

a[=]
a[<1]
a[<2]

(b) Bernstein sets.

x y

m[=]

z

c

Fig. 1. Scalar variables data dependences

Based on the BS types, the following transformation decisions can be
made. Note that the BSs are derived from the whole loop body.

Bernstein set

(i) Variables in the W set

(ii) Variables in the X set

(iii) Variables in the Y set

(iv) Variables in the Z set

Transformation decisions

Scalar variables in this set do not have any
effect since they involve only fetch opera­
tions, so each iteration can be executed in
parallel.
Scalar variables in this set involve only
store operations; this could give unde­
fined values by the concurrent execution of
the iterations in the loop. Since their
values are not fetched by any iteration,
they become redundant and may be moved
out of the loop. However, their values
in the last iteration have to be computed
and saved for later references. Alterna­
tively, they can be renamed with array
variables or declared as local variables.
The values of the variables in this set are
first fetched and later stored, so the data
dependences can be eliminated by scalar
renaming (discussed below) or they are
declared as local variables for each itera­
tion.
The values of these variables are stored and
later fetched, thus they can be treated as
local variables in each iteration or elimi­
nated by scalar renaming or scalar forward
substitution.

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 365

Md Yazid Mohd Saman

Scalar Forward Substitution
In this technique, each occurrence of a variable is substituted with its
corresponding expression (Aho et al. 1986; Polychronopoulos 1988; Zima
and Chapman 1990). In the following example:

for i
begin

Sl:

S2:

end

:= 1 to n do

x := i*i - k;

sum[x] := sum[x,x+5] + a[i];

the variable x causes the data dependence. Since its value is first
evaluated, its occurrence in the succeeding statements can be replaced by
the expression evaluated earlier. This eliminates the data dependence.
Hence, statement Sl can be eliminated and statement S2 modified to:

sum[i*i - k] := sum[i*i - k,i*i - k+5] + a[i];

Since the variables involved must be initially stored and later fetched,
they must be members of the Z set. If the variables involve a new store
operation, then care has to be taken that the new value substituted is the
latest assigned expression. A main disadvantage of this technique is that
it increases the run-time needed to repeatedly evaluate each expression.

Scalar Renaming (Expansion)
In this technique, the scalar variable is given a different name to
eliminate any data dependences (Aho et al. 1986; Polychronopoulos 1988;
Zima and Chapman 1990). This is usually done by renaming it with a
temporary array variable. For example, consider the following loop.

for i:=l to n do
begin

a := 10;
x := a + b;

end;

The variables a and x which cause the data dependences can be
renamed with array names such as NEWa[i] and NEWx[i] respectively.

366 Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995

Transfonnation of Sequential Programs into Parallel Fonns

The transformed loop, which does not have any dependences, is as
follows.

forall i:=l to n do
begin

NEWa[i] := 10;
NEWx[i] := NEWa[i] + b;

end;

This technique applies to scalar variables in the X, Yand Z sets of the
BSs. However, if the variables in Y set are involved in a statement such
as a := a + 1 (i.e., a is called a reduction variable), then they cannot be
renamed as in the above method since each iteration uses and updates the
value. One major shortcoming of this technique is that it increases the use
of variables in the program.

Constant Propagation
This is a common technique in optimizing compilers which determines
the values of constants in programs. These values are then propagated
throughout the programs (Aho et al. 1986; Polychronopoulos 1988; Zima
and Chapman 1990). This technique eliminates the need for run-time
evaluation of the values. Consider the following example.

for i:=l to n do
begin

Sl:pi := 3.142;
S2:twopi := 2*pi;
S3:arr[i] := twopi * rad[i] * rad[i];

end;

The variables pi and twopi can be determined as constants since they
are assigned constant values. Consider the BSs of the loop body.

W X Y Z

Sl: pi
S2: pI twopi
53: twopi arr[i]

rad[i]

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 367

Md Yazid Mohd Saman

From the first BSs, pi is assigned a constant value since there are no
other variables in the other sets. This value is then fetched and later stored
in twopi, thus showing that twopi is also a constant. Therefore, the loop
can be transformed into vector instructions as follows.

pi := 3.142;
twopi := 6.284;
arr[l:n] := twopi * rad[l:n] * rad[l:n];

BLT-BASED TRANSFORMATION OF LOOPS
In this section, some transformation methods suitable for loops contain­
ing array variables are discussed. These methods are standard techniques
for program transformation and are widely discussed in the literature
(Polychronopoulos 1988; Wolfe 1989; Zima and Chapman 1990; Lewis and
El-Rewini 1992). However, the rules for transformation are based on the
contents of the BSs and the results of BLTs (defined earlier as XFS, XBS,
YFS, ZFS, YFF, ZFF, YBS, ZBS, YBF and ZBF).

Loop distribution
In this technique, a loop is broken into several loops to distribute the
control over groups of statements in its body. This is particularly
convenient for vectorization. AB an example, the single loop below has
a YFF dependence caused by array a.

for i:=l to n do
begin
Sl: c[i]:= a[i+2] * b[i];
S2: a[i]:= b [i] + c[i];
end

It can be transformed to become two loops as follows.

for i:=l to n do
c[i] := a[i+2] * b [i];

for i:=l to n do
a[i] := b[i] + c[i];

Then they can be vectorized to become:

c(l:n) = a(1:n+2) * b(l:n)
a(l:n) = b(l:n) + c(l:n)

368 Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

The semantics of the statements are preserved since the fetched
element of a[i+2] in Sl contains its old value. In the following example,
the array a has a XFS data dependence.

for i:=l to n do
begin

a[i] := p;
a[i+l] := q;

end;

It can also be distributed into two loops to become:

for i:=l to n do
a[i] := p;

for i:=l to n do
a[i+l] := q;

The vectorized statements are as follows.

a[l:n] := p;
a[2:n+l] := q;

In general, the BLT-based rules for this transformation are as follows.

a. The variables are store dependent This usually appears in initializa­
tion loops.

b. The statements do not have forward and backward dependences
(i.e., in a cycle) such as in the following example. Statements Sl and
S2 contain an array a that has a forward dependence and array b that
has a backward dependence. This means that they cannot be
separated into different loops.

for i:=l to n do
begin
Sl: a[i+l]:= b[i-l] + c[i];
S2: b[i]:= a[i] * d[i];
S3: c[i]:= b [i] + d [i];
end;

However, the statement S3 has an equal dependence with Sl and S2
and hence the whole loop can be distributed as follows.

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 369

Md Yazid Mohd Saman

for i:=l to n do
begin
Sl: a[i+l]:= b[i-l] + c[i];
S2: b[i]:= a[i] * d[i];
end;

for i:=l to n do
S3: c[i]:= b [i] + d [i];

c. The variables are not YBF or YFS because loop distribution destroys the
dependences and the new values of the arrays are not properly accessed.

Statement reordering
This method involves exchanging the textual posluons of two statements
in a loop body. The following loop cannot be vectorized due to the presence
of a data dependence on array a which is YBF. The values fetched are new
values that are assigned by the other statement, except for the first element.

for i:=l to n do
begin

c[i] := a[i-l] - 4;
a[i] := b[i] * 2;

end;

If the statements are reordered, the loop becomes:

for i:=l to n do
begin

a[i] := b[i] * 2;
c[i] := a[i-l] - 4;

end

Now the data dependence of array a has a ZBF dependence where the
fetched values of a[i-l] are new values. Thus, the loop can be distributed
and vectorized.

a[l:n] = b[l:n] * 2
c[l:n] = a[O:n-l] - 4

In general, the conditions for this kind of transformation, based on the
results of BLTs, are as follows.
a. For the scalar variables, they are members of the W or X sets only

and not members of the Y and Z sets.

370 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

b. For the array variables, the types of dependence are YFS and YBF.
These dependences involve new values that are being fetched
initially. Hence, the statement with the fetch operation may be
reordered to appear later in the sequence of iteration execution.

e. For the array variables, there are NO equal (=) reference directions
after the BLTs have been applied, i.e., there are no loop-independ­
ent dependences on any variables such as the array a in the
following example. Note that array b has a YFS dependence.

for i:= 1 to n do
begin

a[i] := b[i];
b[i+l] := a[i] + ...

end

Loop Interchange
In this technique, any two levels of a perfectly nested loop are exchanged.
For the example below, the BLTs indicate that the inner loop is
unparallelizable, since there is a forward dependence for the j loop for
array a[=,<]. If the loop statements are interchanged, the new inner loop
can then be parallelized.

for i:=l to n do
begin

for j:=l to n do
a[iJ+ I] := a[iJ] * b [i,j];

end

The interchanged version is as follow.

for j:=1 to n do
forall i:=1 to n do
a[i,j+l] := a[iJ] * b[iJ];

Mter interchanging, the outer j loop will be executed sequentially
while the inner i loop can be executed concurrently. This is suitable for
vectorization as in the following form.

for j:=l to n do
a[i:nJ+I] := a[i:nJ] * b[i:nJ];

However, for parallelization, the earlier version (before interchang­
ing) is preferable since then there are overheads incurred in executing the

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 371

Md Yazid Mohd Sarnan

outer loop concurrently. For a nested loop such as in the above example,
this will involve more than one direction for the array variables, that is,
a vector of reference directions is needed. Let D be a vector of data
reference directions (DRDs):

D = (d1,d2, ... ,dn) with di = «,>,=,*),
for all 1 ::::; i ::::; n,n= number of dimensions

The necessary condition for this kind of transformation is that, given
a nested loop of n dimensions, two loop statements with array directions
A[... ,di, ... ,dj, ...] cannot be interchanged if one of them (i.e., di or dj) has
a forward direction and the other one has a backward direction. This
means that if an array has directions such as A[... ,<, ... ,>, ...], it indicates
that the two loops are not interchangeable. The forward, backward and
equal reference directions are derived by the BLTs.

Loop Unrolling
This technique makes one or more copies of the loop body and thus
increases the stride. This reduces the control overhead in executing the
loops as in the following example.

for i := 1 to 1000 do
a[i] := b[i+2] * a[i-1];

It can be unrolled to become a loop with a stride of 2 which has only
500 (i.e., 50% fewer) iterations to be generated.

for i := 1 to 1000 step 2 do
begin

a[i] := b[i+2] * a[i-1];
a[i+1] := b[i+3] * a[i];

end

A similar technique called loop replication makes copies of state­
ments in loop body without changing the stride (Allen et al. 1987).
Consider the following example.

for i := 1 to n do
begin

a[i] := b[i] * c[i];
d[i] := a[i] * a[i-1];

end

372 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

It has a ZBF dependence caused by operations on array elements a[i]
and a[i-l]. To be able to perform array alignment, as discussed above, the
first statement can be replicated and the array element a[i] in the second
and third statement renamed to NEWa[i].

for i := 1 to n do
begin

a[i] := b [i] * c[i];
NEWa [i] := b [i] * c[i];
d[i] := NEWa[i] * a[i-l];

end

The loop can then be distributed and aligned as follows, thus elimi­
nating all data dependences.

for i := 1 to n do
NEWa[i] := b [i] * c[i];

forall i := 0 to n do
begin

if (i > 0) then a[i] := b [i] * c[i];
if (i < n) then d[i+l] := NEWa[i+l] * a[i];

end

Array Renaming (Variable Copying)
Scalar renaming is useful for eliminating data dependences involving

scalar variables. Array variables, can also be renamed to eliminate data
dependences. Consider the following example where there is a data
dependence on array a which is ZFF.

for i:=l to n do
begin

a[i] := b[i] + c[i];
d[i] := a[i] + a[i+l];

end;

It can be transformed into the following version after renaming the
array a[i] to NEWa[i], thus eliminating the data dependence.

for i:=l to n do
NEWa[i] := a[i];

forall i:=l to n do
begin

a[i] := b [i] + c[i];
d[i] := a[i] + NEWa[i+l];

end;

Pertanika J. Sci. & Technol. Vol. 3 No.2, 1995 373

Md Yazid Mohd Saman

The loops can then be vectorized as follows.

NEWa[l:n] := a[l:n];
a[l:n] := b[l:n] + c[l:n];
d[l:n] := a[l:n] + NEWa[2:n+1];

For this technique, the array variables must be of the types YFF, ZFF,
YBS or ZBS as derived by the BLTs, to enable them to be renamed with
different array names. This is because the forward reference is a
reference to an old value. In the previous example, a[i+1] refer to old
values of a and thus can be renamed.

Other Transformation Techniques
(i) Index set splitting
In this technique, the loop is divided into two or more loops with partial
size. The loops can then be executed concurrently. This technique
requires an extraction by the BLTs of the distance of the dependence
in order for the loop bound to be split properly.

(ii) Node splitting
This method breaks expressions occurring in statements into several
parts. This involves a lower level treatment of expressions in statements
of the loops. The arrays involved must be those which do not contribute
to any results in the BLTs.

(iii) Loop blocking.
If the BLTs discover data dependences in a loop with dependence
distances ~ 2 then loop blocking transformation can be used to
parallelize it (Padua and Wolfe 1986; Polychronopoulos 1988). It creates
doubly nested loops out of a single loop, by organizing the computation
in the original loop into chunks of approximately equal size.

(iv) Array alignment
Array alignment is a technique which involves adjusting the array refer­
ence to eliminate the data dependences. It transforms a loop-carried
dependence into a loop-independent dependence. Variables involved are
usually of the types YBS and ZBS such as a[i-1] which can be aligned to
a[i]. This is allowed since the backward reference is a reference to an
old value.

Insertion of Synchronization Statements

374 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

In some cases, data dependences cannot be eliminated at all. When array
variables with complex array subscripts, such as coupled subscripts or
array subscripts or those other than (i1const), are met, usually data
dependence is assumed to exist. Since the dependences are difficult
to eliminate, the synchronization instructions such as LOCK and UN­
LOCK (for shared memory machines) are used (Midkiff and Padua
1987). These instructions create the critical regions in which only one
process is able to execute its critical region at a time.

PROBLEMS AND FUTURE WORK

Table 1 gives a summary of the transformation techniques that can be
performed, based on the results of the BLTs. The techniques discussed
above have some limitations. In this section these problems and future
work will be discussed.

Problems
Regarding the formation of data reference directions (DRDs) in the
BLTs, the subscripts that are analysed are simple expressions of the
forms [i ± constant]. Shen et at. (1989) have shown that there are other
forms of complex subscript expressions commonly found in programs,
although they are not found as frequently as the simple expressions
allowed by BLTs. These complex expressions include coupled subscripts
(i.e., loop indices appearing at any level), nonlinear subscripts, array
subscripts and symbolic subscripts. In this case, the BLTs will assume that
there are data dependences and no transformation can be carried out.

The handling of complex subscript expressions has been studied by
several researchers using numerical methods (Banerjee 1988; Wolfe 1989).
Solutions for array subscripts have been discussed by Polychronopoulos
(1988). Apart from these problems, loops sometimes contain non-uni­
form loop indexing, procedure calls and conditional statements. This
increases the complexity of the loop analysis for data dependence. Proce­
dure calls can be handled by inter-procedural analysis (IPA) (Md Yazid
1993c). The problem caused by non-uniform loop indexing needs modi­
fication before any analysis and transformation can be performed.

An example of such a loop is as follows.

for i := 100 downto 1 do
for j := 5 to 100 step 3 do

This can be overcome by normalizing the loop indexing so that each
loop will start from 1 with a stride of 1. This, however, will complicate
the subscript expressions in the loop body and thus making it more

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 375

Md Yazid Mohd Saman

TABLE 1
Loop transformations and the dependence types

Dependence Types

X-Forward/Store (XFS)
X-Backward/Store (XBS)
V-Forward/Store (YFS)

V-Forward/Fetch (YFF)

V-Backward/Store (YBS)

V-Backward/Fetch (YBF)
Z-Forward/Store (ZFS)
Z-Forward/Fetch (ZFF)

Z-Backward/Store (ZBS)

Z-Backward/Fetch (ZBF)

Transformation

Loop distribution
Loop distribution
Statement reordering
Loop blocking
Loop distribution
Array renaming
Loop blocking
Loop distribution
Array renaming
Array alignment
Statement reordering
Loop distribution
Statement reordering
Array renaming
Loop blocking
Statement reordering
Array renaming
Array alignment
Loop distribution

difficult to be handled by the BLTs. Another problem that is encountered
by the dependence analysis is symbolic subscripts where the subscripts
contain variables (Haghighat 1990). Sometimes, this can be solved by
constant propagation. However, in some cases, the actual value~ of the
symbolic expressions are only known at run-time. One simple solution is
to generate conditional vectorized statements (Padua and Wolfe 1986).
Consider the following example.

for i:=l to n do
a[i+k] := a[i] /b [i] + c[i];

If the value of k is not known at compile time, the translation could
look like the following code.

if (k < 1 or b= n) then
a[k+1:n+k] := a[l:n] / b[l:n] + c[l:n]

else

376 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

for i:=l to n do
a[i+k] := a[i]/b[i] + c[i];

The presence of complex control flow in loops also poses problems for the
BLTs. This creates the control dependence between two or more statements
in a loop. This dependence prevents the execution of one statement while
executing the other (Allen et al. 1983). One simple solution to this problem
is to convert them into data dependences. Logical variables are introduced to
control execution of statements. Consider the following example.

for i := 1 to n do
if a[i] > 0 then

a[i] := b[i] + c[i];

The control dependence can be removed as follows.

for i := 1 to n do
begin

t := a[i] > 0;
if (t) then a [i] := b [i] + c[i];

end

The vectorized form of the above loop makes use of the where
statement, as in Fortran 8x; it is as follows.

t[l:n] = a[l:n] > 0;
where (t[l:n]) a[l:n] = b[l:n] + c[l:n];

Implementation
Currently, a project is being carried out to implement the above transforma­
tion techniques. A software tool called UNIPAR is being developed that will
accept a subset of a sequential Pascal program and transform it into parallel
Pascal such as Sequent Pascal and Multi-Pascal (Lester 1993). Details of its
background and implementation are discussed elsewhere (Md Yazid 1995).

CONCLUSION

Once the data dependences in loops have been ascertained in the data
dependence analysis, they can be parallelized by modifying the codes to
remove the dependences. This paper has discussed the transformation
techniques that can be carried out on loops in sequential programs in order
to parallelize them. Combinations of the techniques may be used to do the
transformations. This process must ensure that the semantics of the loops
are maintained. For those loops whose dependences cannot be eliminated,

Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995 377

Md Yazid Mohd Saman

certain synchronization constructs such as LOCK and UNLOCK may be
inserted and the loop iterations may still be run in parallel.

The rules for transformation developed in this paper are based on the
BLTs as well as the contents of the BSs. Other researchers have been
concentrating on performing the transformation based on the data de­
pendence graphs. Although the algorithms for the DDGs are well known,
they need extra space for their representation. The BLTs-based techniques
can be applied directly from the results of the BLTs. As a conclusion, this
paper has shown that the BSs and the results of the BLTs are very useful
in making decisions on the type of transformation methods to be carried
out in the parallelization of programs.

ACKNOWLEDGEMENTS

The supervision of Prof. DJ. Evans of Parallel Algorithms Research Centre,
UK in conducting the above research is greatly appreciated. Financial
assistance was provided by Universiti Pertanian Malaysia.

REFERENCES
AHa, AV., R. SEITH andJ.D. ULLMAN. 1986. Compilers Principles, Techniques and Tools. Reading,

MA: Addison-Wesley.

ALLEN, F.E. 1988. Compiling for parallelism: an oveIView. In: Parallel Systems and Computa­
tions ed. G. Paul and G.S. Almasi. p. 3-13. North-Holland.

ALLEI ,J.R., K. KENNEDY, C. PORTERFIELD and J. WARREN. 1983. Conversion of control
dependence to data dependence. In: Proceedings of10thACM Symposium on Principles of
Prog. Lang, p. 177-189. Austin, Texas: ACM Press.

ALLEN, R., D. CALLAHAN and K. KENNEDY. 1987. Automatic decomposition of scientific
programs for parallel execution. In: Proceedings of14th ACM Symposium on Principles of
Prog. Lang, p. 63- 76. Austin, Texas: ACM Press.

BANERJEE, U. 1988. Dependence Analysis for Supercomputing. Boston, Mass: Kluwer.

BERNSTEIN, AJ. 1966. Analysis of programs for parallel processing. lEE Trans. onElec. Compo
1 EC-15: 757-763.

HAGHIGHAT, M.R. 1990. Symbolic dependence analysis for high performance parallelizing
compilers. CSRD Rpt. No. 995 MSc thesis, University of Illinois USA.

KucK, Dj., R.H. KUHN, B. LEASURE and M. WOLFE. 1984. The structure of an advanced
retargetable vectorizer. In: Tutorial Supercomputers: Design and Applications, ed. K.
Hwang. p. 163-178. IEEE Computer Soc.

LESTER, B.P. 1993. The Art ofParallel Programming. Englewood Cliffs, NJ: Prentice-Hall.

LEWIS, T.G. and H. EL-REWINI. 1992. Introduction to Parallel Computing. Englewood Cliffs, NJ:
Prentice Hall.

MIDKIFF, S.P. and DA. PADUA. 1987. Compiler algorithms for synchronization. IEEE Trans.
on Computers C-36-12: 1485-1495.

378 Pertanika J. Sci. & Techno!. Va!. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

MD YAZID MOHD SAMAN. 1993a. The Bernstein method for data dependence analysis.
Technical Report SAK/TR-003/1993, Dept. of Computer Science, UPM.

MD YAZID MOHD SAMAN. 1993b. The Bernstein method for automatic parallelization of
programs. Technical Report SAK/TR-00I/1993, Dept. of Computer Science, UPM.

MD YAZID MOHD SAMAN. 1993c. Inter-procedural analysis. Technical report SAK/TR-002/
1993, Dept. of Computer Science, UPM.

MD YAZID MOHD SA,\1AN. 1995. UNIPAR: A software tool for parallelizing Pascal programs.
Technical report SAK/TR-004/1995, Dept. of Computer Science, UPM.

PADUA, D.A. and MJ. WOLFE. 1986. Advanced compiler optimizations for supercomputers.
CACM 29(12): 1184-1201.

POLYCHRONOPOULOS, C.D. 1988. Parallel Programming and Compilers. Boston, Mass: Kluwer.

SHEN, Z., Z. LI and P. YEW. 1989. An empirical study on array subscripts and data dependen­
cies. In: Proceedings of International Conference on Parallel Processing, p. 11-145-152.

WILUAMS, S.A. 1978. Approaches to the determination for parallelism for computer
programs. PhD thesis, Loughborough University of Technology, UK.

WOLFE, M. 1989. Optimizing Supercompilers for Supercomputers. London: Pitman.

ZIMA, H.P. and C. CHAPMAN. 1990. Supercompilers for Parallel and Vector Computers. ACM Press.

Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995 379

Md Yazid Mohd Saman

APPENDIX

DEFINITION 1.

Bernstein sets (BSs) consist of four sets defined as follows:

a. W set - set of variables fetched during execution of task
b. X set - set of variables stored during execution of task
c. Y set - set of variables which involves a fetch and one of the

succeeding operations is a store
d. Z set - set of variables which involves a store and one of the

succeeding operations is a fetch

DEFINITION 2.
Bernstein tests (BTs) between two tasks i and j, are tests to determine
whether they.can be run concurrently or not, i.e., if they satisfy all of the
following three conditions:

(Xi OR Yi OR Zi) AND (Wj OR)j OR Zj)= .0.
(Wi OR Yi OR Zi) AND(Xj OR)j OR Zj)= 0
(Xi OR Yi OR Zi) AND (Xj OR)j OR Zj)= .0.

DEFINITION 3.
Bernstein loop tests (BLTs) are tests to determine whether loop iterations
can be run concurrently or not. In these tests data reference directions
(forward direction <, backward direction> and equal direction =) are
introduced in the Bernstein Sets. The loop must satisfy all of the
following three conditions in order to be parallelised.

BLTl:WYZi AND XYLj
where 1 <= i,j <= n, n = number of tasks
BLT2:XYLi AND XYLj
where 1 <= iJ <= n, n = number of tasks

Note that XYLi and WYZi denote (Xi OR Yi OR Zi) and (Wi OR Yi OR Zi)
respectively. To determine the existence of data dependences in a loop
that contains n tasks Si and Sj (where 1 <= iJ <= n):

a. for scalar variables:
BLT1 (Si , Sj) <> 0 for all i and j
BLT2 (Si , Sj) <> 0 for all i and j, i < j

380 Pertanika J. Sci. & Techno!. Vo!. 3 No.2, 1995

Transformation of Sequential Programs into Parallel Forms

b. for array variables:

BLTI (Si,Sj) <> 0 or produces forward/backward directions with non­
zero dependence distances, for all i and j and BLT2 (Si,Sj) <>0 or
produces forward/backward directions with non-zero dependence
distances, for all i and j and i < j.

Pertanika J. Sci. & Techno!. Vol. 3 No.2, 1995 38l

