

UNIVERSITI PUTRA MALAYSIA

NUMERICAL ASSESSMENT OF COANDA EFFECT FOR WIND TURBINE APPLICATION

MOHD FAISAL BIN ABDUL HAMID

FK 2012 14

NUMERICAL ASSESSMENT OF COANDA EFFECT FOR WIND TURBINE APPLICATION

MOHD FAISAL BIN ABDUL HAMID

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfillment of the Requirements for the Degree of Master of Science

June 2012

Abstract of thesis presented to the Senate of Universiti Putra Malaysia In fulfillment of the requirement for the degree of Master of Science

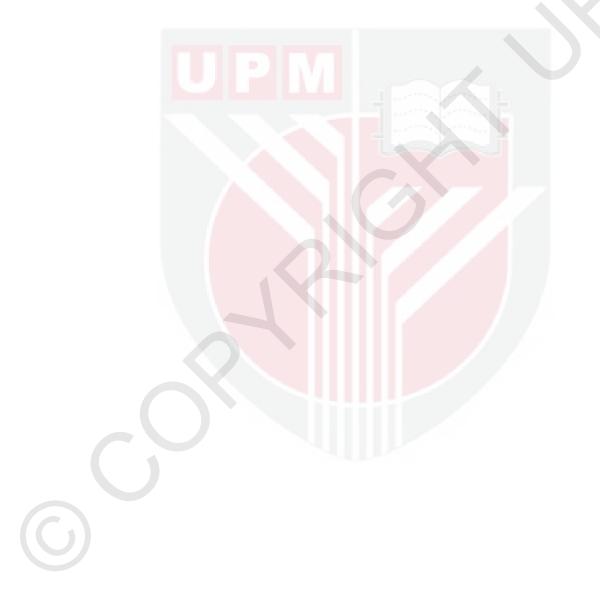
NUMERICAL ASSESSMENT OF COANDA EFFECT FOR WIND TURBINE APPLICATION

By

MOHD FAISAL BIN ABDUL HAMID

June 2012

: Professor Harijono Djojodihardjo, Sc.D


Faculty

Chair

: Engineering

Various methods of flow control for enhanced aerodynamic performance have been developed and applied, such as continuous, synthetic and pulsed jets, compliant surface, vortex-cell and the like, to dramatically alter the behavior of aerodynamic components such as airfoils, wings, and bodies. In an effort to optimize aerodynamic performance of wind turbine, the use of the Coandă effect, by blowing high velocity jet tangential over a highly curved surface (such as a rounded TE) to increase the circulation and lift has gained renewed interest, in particular with the progress of CFD. The present work review the influences, effectiveness and configurations of Coandă-jet fitted aerodynamic surface, in particular S809 airfoil, to improve its lift augmentation and lift over drag ratio, with a view on its incorporation in the design of wind turbine. For this purpose, a simple two-dimensional CFD modeling using k – omega and k – epsilon turbulence models is utilized to reveal the key elements that could exhibit the desired performance criteria for a comprehensive series of configurations. A parametric study indicates that Coandă configured airfoil can only be effective in a certain range of the TE radius, the jet thickness and the momentum

jet size; the location of the jet was found to be effective when it is placed close to the TE. The results are compared with existing experimental data for benchmarking. Three-dimensional configurations are synthesized using certain acceptable assumptions. A trade-off study on the S809 Coandă configured airfoil is needed to judge the optimum configuration of Coandă-jet fitted wind turbine design.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk Ijazah Master Sains

PENILAIAN ANALISA BERANGKA KESAN COANDA UNTUK APLIKASI TURBIN ANGIN

Oleh

MOHD FAISAL BIN ABDUL HAMID

Jun 2012

Pengerusi : Profesor Harijono Djojodihardjo, Sc.D

Fakulti : Kejuruteraan

Pelbagai kaedah kawalan aliran untuk meningkatkan prestasi aerodinamik telah dimaju dan diaplikasikan, seperti jet berterusan, sintetik dan denyutan, permukaan patuh, sel vorteks dan sepertinya, untuk mengubah sifat komponen aerodinamik seperti kerajang udara, sayap, dan badan secara mendadak. Dalam usaha untuk mengoptimumkan prestasi aerodinamik turbin angin, penggunaan kesan Coandă, dengan meniupkan jet berhalaju tinggi ke atas satu permukaan melengkung (seperti di pinggir lelar yang bulat) untuk meningkatkan edaran dan daya angkat telah menarik minat baru, khususnya dengan kemajuan CFD. Hasil penyelidikan menunjukkan pengaruh, keberkesanan dan konfigurasi jet Coandă dapat disesuaikan kepada permukaan aerodinamik, khususnya kerajang udara S809, untuk meningkatkan penambahan daya angkat and nisbah daya angkat kepada daya seret, dengan memberi perhatian dalam kesesuaian reka bentuk turbin angin. Untuk tujuan ini, satu analisa CFD dua dimensi mudah menggunakan model kegeloraan k – omega dan k – epsilon diaplikasikan untuk mendedahkan elemen utama yang boleh menunujukkan kriteria prestasi tinggi untuk satu siri konfigurasi komprehensif yang diingini. Kajian berparameter menunjukkan kerajang udara berkonfigurasi Coandă hanya boleh memberi kesan yang efektif dalam lingkungan jejari pinggir lelar, ketebalan jet dan saiz momentum jet yang tertentu; lokasi jet didapati dapat memberi kesan yang efektif hanya apabila ia diletakkan hampir kepada pinggir lelar. Keputusan juga telah dibandingkan dengan data ekperimen bagi tujuan penanda aras. Konfigurasi tiga dimensi disintesiskan dengan berdasarkan andaian tertentu yang boleh diterima. Kajian keseimbangan bagi konfigurasi kerajang udara Coandă S809 diperlukan untuk menentukan konfigurasi jet Coandă yang optimum bagi aplikasi reka bentuk turbin angin.

v

ACKNOWLEDGEMENTS

Thank you the Almighty, Allah S.W.T. for giving me the strength and will power to complete the thesis.

I would like to express my sincere gratitude to Prof. Ir. Dr. Harijono Djojodihardjo, my teacher and dissertation advisor, for his patient, his encouragement and his support throughout the research period. His delightful personality and detailed knowledge of this research topic has guided me until the very end.

I would not be here without all that he has done. I would also like to thank Prof. Ir. Dr. Shahnor Basri, Dr. Dayang Laila Abang Abdul Majid and Dr. Fairuz Izzudin Romli, for their thorough review of the thesis and for their valuable comments. I am especially appreciative to Dr. Abdul Aziz Jaafar for his helpful suggestions on CFD from his many years of experience.

In the abyss of my heart, to those who are very helpful and supportive in any way, form or shape but shall not be named here; you all are true gems, which I will always remember, cherish and treasure for years and years to come. Without any of you, my work will not be as good as it is now, for that thank you very much.

Finally, I would like to thank my parents for their continued support throughout my education at Universiti Putra Malaysia. I would also like to acknowledge the warm support and caring of my dear wife, Nazia Umran. Without her encouragement and enthusiasm, this work could not have been completed.

This work was made possible by the Ministry of Science, Technology and Innovation, Malaysia who sponsored this research under the Research University Program, Research University Grant Scheme No. 05-02-10-0928RU. I certify that an Examination Committee has met on **21 June 2012** to conduct the final examination of **Mohd Faisal Bin Abdul Hamid** on his **Master of Science** thesis entitled "**Numerical Assessment of Coandă Effect for Wind Turbine Application**" in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The Committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Rizal Zahari, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Chairman)

Faizal Mustapha, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Surjatin Wiriadidjaja, PhD

Associate Professor Faculty of Engineering Universiti Putra Malaysia (Internal Examiner)

Mohd Zulkifly Abdullah, PhD

Professor School of Mechanical Engineering Universiti Sains Malaysia (External Examiner)

SEOW HENG FONG, PhD Professor and Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Harijono Djojodihardjo, ScD

Professor Faculty of Engineering Universiti Putra Malaysia (Chairman)

Fairuz Izuddin Romli, PhD

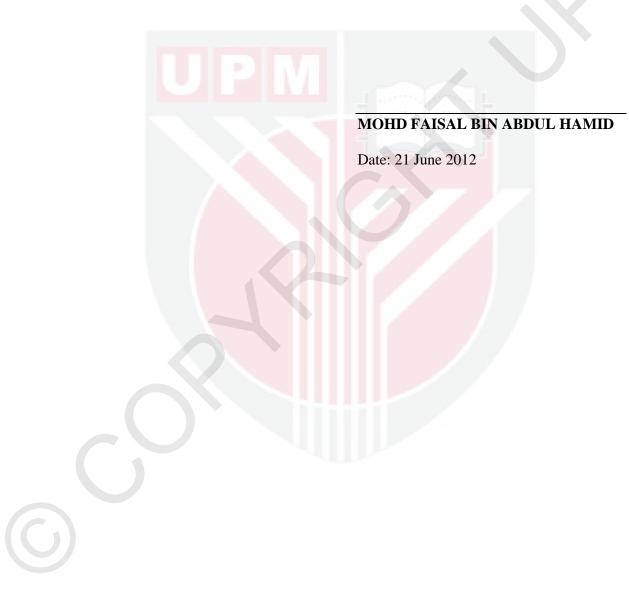
Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Dayang Laila Abang Abdul Majid, PhD

Senior Lecturer Faculty of Engineering Universiti Putra Malaysia (Member)

Shahnor Basri, PhD

Professor Faculty of Manufacturing Engineering Universiti Malaysia Pahang (External Member)


BUJANG BIN KIM HUAT, PhD

Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

TABLE OF CONTENTS

	Page
ABSTRACT	ii
ABSTRAK	iv
ACKNOWLEDGEMENTS	vi
APPROVAL	vii
DECLARATION	ix
LIST OF TABLES	xii
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvii

CHAPTE		
1	INTRODUCTION	1
	1.1 Energy	1
	1.1.1 Renewable energy	3
	1.1.2 Wind energy	5
	1.2 Wind Turbine	9
	1.3 Circulation Control	13
	1.4 Problem Formulation	14
	1.5 Objectives	16
2	LITERATURE REVIEW	18
	2.1 Coandă Effect	18
	2.1.1 History	18
	2.1.2 Concept	21
	2.1.3 Technology and Application	23
	2.2 Previous Research Work	36
3 METHODOLOGY		39
	3.1 Background Philosophy	39
	3.2 COMSOL Multiphysics (CFD Module)	41
	3.3 Computational Modeling	44
	3.3.1 Reynolds-Averaged Navier-Stokes (RANS)	44
	3.3.2 Turbulence Modeling	45
	3.4 Computational Set-Up	54
	3.4.1 Computational Grid	54
	3.4.2 Initial and Boundary Conditions	57
4	COMPUTATIONAL VERIFICATION AND VALIDATION	59
	4.1 Computational Verification	59
	4.1.1 Estimation of Discretization Error	59

		4.1.2	Discretization Error (Numerical Error)	61
	4.2	Comp	outational Validation	65
		4.2.1	k – omega Turbulence Model	66
		4.2.2	k – epsilon Turbulence Model	69
5	GEN	ERAT	ION OF COANDA JET	73
	5.1	Coand	dă Configured Airfoil Design	73
	5.2	Anato	omy and Architecture	73
6	RES	ULTS	AND ANALYSIS	76
	6.1	Comp	outational Results	76
		6.1.1	NACA2412 Airfoil (k – omega)	76
		6.1.2	S809 Airfoil (k – omega)	78
		6.1.3	S809 Airfoil (k – epsilon)	82
	6.2	Analy	tical Results	93
	6.3	Analy	rsis and Discussion	97
		6.3.1	CFD Results for Coandă-jet Configured S809 Airfoils	97
		6.3.2	Contribution of Coandă-jet Momentum Coefficient	97
7	CON	ICLUS	ION AND FURTHER WORK	100
REFERE	NCES			104
APPEND	IX A			113
Pro	cedure	e for Es	stimation of Discretization Error	113
APPEND	IX B			116
Ana	alytica	l Analy	ysis on Coandă MAV	116
BIODATA	-			135
LIST OF	PUBL	ICATI	IONS	136

G