Pertanika J. Sci. & Technol. 3(2): 297-310 (1995)

Effect of Elevated CO₂ on the Growth of Two Different Climate-origin Forbs in Four Levels of Nitrogen Nutrition

Toshinori Okuda, Shigeru Mariko¹ and Akio Furukawa

Division of Global Environment Studies National Institute for Environmental Studies Tsukuba, Ibaraki, 305 Japan

¹Sugadaira Mountain Research Center Univ. Tsukuba, Sanada, Nagano 386-22, Japan

Received 6 February 1995

ABSTRAK

Dua jenis tumbuhan dari iklim yang berbeza, Chenopodium album L. (tumbuhan asli dari kawasan iklim sederhana) dan Amaranthus patulus Bertol (tumbuhan asli dari kawasan neo-tropika), telah dibesarkan didalam "growth chamber" pada dua paras CO., iaitu 350 dan 700 ppm di bawah empat paras pembajaan nitrogen. Ketinggian paras CO, menyebabkan kenaikan jumlah jisim dan pengurangan keamatan nitrogen di dalam daun dalam C. album yang diperkayakan CO, nya, tetapi tidak dalam A. patutus. Kesan CO, keatas tumbesaran A. patulus adalah tidak ketara tetapi kesan. CO, keatas tumbesaran C. album adalah sangat ketara. Tidak terdapat pertukaran yang ketara didalam alokasi diantara tunas dan akar didalam kedua dua spesis berbandingkan CO, yang dibekalakan. Pada masa ini dua spesis tersebut tumbuh bersama sama di tanah "eutrophic" pada fasa awal suksesi, seperti dalam bahan buangan atau lapangan yang ditinggalkan. Bagaimanapun, dibawah keadaan CO, yang diperkayakan, C. album mungkin akan bertambah dominan relatif serta distribusinya sementara A. patulus, tidak. Keputusan menunjukkan bahawa kesan paras CO, keatas tumbuh-tumbuhan adalah berkaitan dengan iklim asalnya.

ABSTRACT

Two different climate-origin forbs, *Chenopodium album* L. (native to temperate regions) and *Amaranthus patulus* Bertol (native to neo-tropical regions), were grown in growth chambers at two CO₂ levels, 350 and 700 ppm, under four levels of nitrogen nutrition. Elevated CO_2 resulted in increased total biomass and decreased leaf-nitrogen concentration in *C. album*. A decrease in specific leaf area (SLA) was observed with *C. album* in enriched CO_2 , but not in *A. patulus*. There were no apparent CO₂ effects on the growth of *A. patulus*, but CO₂ effects on the growth of *C. album* were amplified as the nutrient level increased. There was no significant change in allocation between the top (shoot) and root of either species in relation to CO₂ enrichment. At present, the two species are co-existing in the eutrophic soil conditions of early successional stages, such as in waste or abandoned fields. However, under elevated CO₂ conditions, *C. album* will probably increase its relative dominance and distribution while *A. patulus* will not. The results imply that the effects of CO₂ level on the plants will depend on their climatic origins.

Keywords: Amaranthus patulus, Chenopodium album, CO₂ elevation effect, nitrogen supply, temperate and tropical origin annuals

INTRODUCTION

The steady increase in atmospheric CO₂ concentration has inspired many biologists to study how this global change affects plant growth and ecosystems (Strain and Bazzaz 1983; Strain and Cure 1985; Hogan et al. 1991). However, most of these studies concern the response of crops to the enriched CO₉ (Curtis et al. 1989; Lawlor and Mitchell 1991). This is primarily because physiological and allocation responses of plants to CO, enrichment were first discovered in agricultural crops (Bazzaz 1990) and of course, such a global change could have serious effects on agricultural production (Kimball 1983; Lawlor and Mitchell 1991). It is well known that higher CO₂ concentration induces greater plant production, such as "CO, fertilization" in greenhouse cultivation. Therefore, studies on plant species from natural ecosystems have lagged behind those on crops. However, information on such wild species has now become available (Bazzaz 1990). Early successional stages of plant communities, which mostly consist of herbaceous species, may be more vulnerable to global climate changes than mature stages of succession. Some reports describe faster growing or pioneer species showing greater enhancement of growth by elevated CO₂ than slower growing or climax species (Tolley and Strain 1984; Oberbauer et al. 1985). Although there is an exceptional case of shade-tolerant and late successional species showing larger biomass increases with elevated CO₂ (Bazzaz 1990), changes in early successional assemblages by CO, enrichment definitely influence the subsequent development process of the communities in terms of composition and structure. Thus, the study of regenerating ecosystems is crucial to assessing the possible impact of global change (Bazzaz 1990).

Recent studies have stressed the importance of elucidating the effects of CO₉ enrichment on the competitive interaction of plants and on feeding rates in herbivores. Nitrogen content altered by elevated CO₂ (Johnson and Lincoln 1990) will possibly affect feeding rates of herbivores (Mattson, 1980; Lincoln and Courvet 1989; Fajer et al. 1989, 1991). Furthermore, effects on the yield of plants grown in competition are known to be different from those grown individually (Bazzaz and Carlson 1984; Bazzaz et al. 1989). However, in spite of this improved understanding of the physiological response of plants to elevated CO₉, it has been difficult to transfer this work to natural plant ecosystems (Curtis et al. 1989), due to the great diversity in plant responses to elevated CO. (Carlson and Bazzaz 1980; Kimball 1983; Morgan et al. 1994). In addition, effects of elevated CO, on plant growth are dependent on other environmental factors (Patterson and Flint 1982; Bowman and Strain 1987; Eamus 1991; Hogan et al. 1991; Morgan et al. 1994). In this context, the information on plant responses to CO, enrichment is still limited and more case studies are needed, particularly to predict the vegetation changes in a local area.

In the present study, using two naturalized annual forbs, *Chenopodium* album (temperate origin) and Amaranthus patulus (neotropical origin), we studied the effects of elevated CO_2 (700 ppm) on their growth at four different nutrient levels. Both species are commonly found, sometimes coexisting, in disturbed ecosystems or abandoned agricultural fields. Recent modelling studies predict changes in regional plant productivity and the distribution pattern of plants as a result of increased temperature associated with increased CO_2 and other greenhouse gases (Davis and Botokin 1985; Emanuel *et al.* 1985; Shugart and Emanuel 1985; Davis 1989; Hogan *et al.* 1991; Bush *et al.* 1992). Some suggest a northward shift in plant distribution (e.g. Davis 1989; Sasek and Strain 1990). Thus, it is also important to study the effect of CO_2 on different climate-origin species in order to predict the direction of plant migration with global climate changes.

MATERIALS AND METHODS

Seeds of Amaranthus patulus and Chenopodium album were collected from abandoned fields in Tsukuba, Japan. They were germinated in quartz sand and transplanted in plastic cups filled with peat moss. Each cup was placed in a pot (5 cm diameter x 18 cm depth) and raised in hydroponic medium (Modified Rorison Nutrient Solution, Hewitt, 1966). Nitrogen concentration was controlled with NH_4NO_3 at four different levels; standard strength (4 mM NH_4NO_3), five-fold strength, 1/5 strength and 1/25 strength. The nutrient solution was changed once a week.

On day 10 after germination, seedlings of each species were placed in separate growth chambers and exposed to two different CO_2 levels (350 and 700 ppm). The temperature and relative humidity in both chambers were controlled at 30/25°C (12 h day/ 12 h night) and 70% respectively. A photon flux density of 450 μ mol m⁻² s⁻¹ was controlled with metal halide lamps in both chambers.

Every 10 days from the start of carbon dioxide treatment until day 30 seven plants from each species and from each of the four different nitrogen levels were sampled and separated into three parts: shoot, leaf, and root. The leaf area (LA) was measured and the plant parts were dried in an oven (80°C) for two days and the weight measured. These variables permitted determination of leaf weight ratio (LWR), top root ratio (T/R), leaf area ratio (LAR) and specific leaf area (SLA) (Hunt 1990). Total nitrogen content was measured for each plant part sampled 30 days after the experiment was started, using Sumi-graph (Sumica).

Two-way ANOVA was employed to examine the effects of CO_2 doubling and nitrogen levels on the biomass, the measured parameters mentioned above, and the nitrogen content of the plants. The 0.05 level of probability was employed for the test of significance.

RESULTS AND DISCUSSION

The growth of *Chenopodium album* was significantly affected by CO_2 doubling, while *Amaranthus patulus* did not show such a consistent response to the CO_2 enrichment. The difference in whole plant biomass of *Chenopodium* between 350 and 700 ppm levels was the most apparent in nutrient-rich conditions (standard and 5-fold strength nutrient solution) (*Fig. 1*). These results correspond to studies demonstrating that the response to enriched CO_2 levels is more pronounced under higher levels of nutrients, and that the CO_2 fertilization effects become indistinct under nutrient-limited conditions (Wong 1979; Goudriaan and de Ruiter 1983; Zangerl and Bazzaz 1984; Brown and Higginbotham 1986; Bazzaz 1990; Arp 1991; Hogan *et al.* 1991; Bazzaz and Fajer 1992; Patterson and McDonald 1994; Kirschbaum *et al.* 1994). Thus, the CO_2 fertilization effects are not consistent unless other resources reach sufficient levels.

Fig. 1. Changes in whole plant dry weight (g) of Chenopodium album and Amaranthus patulus in two levels of CO₂ (350, 700 ppm) and four levels of nitrogen nutrient. Nutrient solutions were based on Modified Rorison Nutrient Solution (Hewitt, 1966), with nutrient levels of five-fold-strength (5), 1/5 strength (1/5), 1/25 strength (1/25) and of standard strength (1), containing 4 mM NH₂NO₂. Vertical bars represent 1±SE.

Pertanika J. Sci. & Technol. Vol. 3 No. 2, 1995

The difference in growth response to elevated CO, between C. album and A patulus may be due to the difference in photosynthetic pathway, as C. album belongs to the C_a plant group and A. patulus belongs to C_a. Since the C_a photosynthetic pathway is more inhibited by photorespiration in ambient CO₂ level than C_4 , it is assumed to be more favourably enhanced by CO₂ enrichment (Bowes 1991; Long 1991; Mooney et al. 1991). The results in the present study correspond to previous reports, which have commonly found that C₃ plants increase growth with increased CO₂ concentration. On the other hand, the response of C₄ plants is generally lower than C_a plants and varies widely among the species within the C_a group (Ford and Thorne 1967; Carlson and Bazzaz 1980; Rogers et al. 1983; Potvin and Strain 1985; Downton et al. 1987; Smith et al. 1987; Mooney et al. 1991). However, there are some exceptions; Garbutt et al. (1990) studied the effect of the differential responses of five annuals (C_a forbs, one C₃ grass and two C₄ forbs) to elevated CO₉, and reported that there were biomass increases in one C3 and one C4 forb but no significant increase in any of the other species. Moreover, Amaranthus retroflexus (a closely related C4 species to A. patulus) showed a more positive response to elevated CO₂ than its counterpart C₃ species, Abutilon theophrasti and the competitive balance between them shifted in favour of A. retroflexus (Bazzaz et al. 1989). Therefore, the response of any species to CO, is unlikely to be simple (Garbutt et al. 1990). It may be species specific, rather than being caused by the C_4/C_4 dichotomy.

In *C. album*, leaf area (LA) showed slightly higher values in elevated CO_2 only at the 5-fold nitrogen level (*Fig. 2*), but it was mostly unaffected by CO_2 enrichment. The T/R ratio in both species did not show consistent changes in relation to CO_2 enrichment (Table 1), although many previous studies had shown increases in allocation to roots (Tolley and Strain 1985; Luxmoore *et al.* 1986; Norby *et al.* 1986; Larigauderie *et al.* 1988; Mousseau and Enoch 1989; Lawlor and Mitchell 1991). Similarly, leaf weight ratio (LWR) in both species did not show significant changes between ambient and enriched CO_2 levels.

In *C. album*, SLA (cm² g⁻¹) and LAR (cm² g⁻¹) showed lower values at 700 ppm than at 350 ppm (*Fig. 3, 4*), indicating that leaf-thickening had occurred and the plants had become less leafy in the elevated CO_2 conditions which partly agree with previous work (Lieth *et al.* 1986; Leadley and Reynolds 1988). Moreover, the lower value of LAR in 700 ppm suggests that *C. album* had increased its biomass with less carbon investment in its leaves (increased production efficiency). Decreased SLA in elevated CO_2 has also been reported in other studies (e.g. Garbutt *et al.* 1990). The decrease in SLA is often associated with a decrease in nitrogen content (Bazzaz 1990); this trend was shown in the present study.

Fig. 2. Changes in leaf area (cm²) of Chenopodium album and Amaranthus patulus in two levels of CO₂ and four levels of nitrogen nutrient. Notation is same as in Fig. 1.

Nitrogen content in leaves (LNc, mg g¹) of *C. album* was significantly lowered by the elevated CO_2 (Table 1, *Fig. 5*). The difference in this value in *A. patulus* was significant (P<0.05), but it was not as apparent as in *C. album*, and its response to CO_2 levels was inconsistent (*Fig. 5*). This finding partly corresponds to the finding that most plants unaccountably reduce the nitrogen concentration in their leaves (Wong, 1979; Strain and Bazzaz 1983; Johnson and Lincoln 1990; Newton 1991; Conroy 1992). However, *A. patulus* did not necessarily follow this trend. Decrease in leaf-nitrogen content is probably due to the increased starch levels in leaves of plants that increase their biomass in an enriched CO_2 atmosphere (Bazzaz 1990). Therefore, the decrease in LNc may not be found in C_4 plants such as *A. patulus*, which shows no increase in biomass with the enriched CO_2 . The nitrogen content of other parts of the plant body, the stem and root, was not distinctly different between the two CO_2 levels in both species (Table 1).

Although the nitrogen content in leaves was significantly higher in 350 ppm than in 700 ppm in *C. album*, nitrogen content per unit area (LNc/LA) showed no significant difference between the two CO_2 levels (Table 1). Therefore, increased biomass and production efficiency in elevated CO_2 probably result from increased photosynthetic ability on the basis of leaf

TABLE 1

ANOVA table showing F-value for whole plant dry weight (WD), Leaf weight ratio (LWR), top and root ratio (T/R), leaf area (LA), leaf area ratio (LAR), specific leaf area (SLA), leaf nitrogen content (LNc), stem nitrogen content (SNc), root nitrogen content (RNc) and leaf nitrogen content per unit area of leaf (LNc/LA) in *Chenopodium album* and *Amaranthus patulus* at 30 days from the start of experiment. Factors are CO₂ concentration (A) and nitrogen nutrient level (B).

Fastan	۸	g	A v P
Factors	л. 1	9	AXD 9
di	1	3	3
Chenopodium album			
WD	17.008**	193.320**	1.873
LWR	3.503	9.584**	0.363
T/R	1.471	81.210**	2.811*
LA	2.947	510.439**	1.415
LAR	26.335**	417.479**	0.974
SLA	22.163**	213.441**	0.503
LNc	16.865**	646.651**	1.103
SNc	2.502	2498.125**	1.174
RNc	3.742	326.371**	3.845**
LNc/LA	0.004	240.790**	0.064
Amaranthus patulus			
WD	1.373	422.191**	3.234**
LWR	0.143	586.197**	0.260
T/R	2.440	221.795**	0.851
LA	3.034	678.477**	2.301
LAR	0.087	459.778**	0.857
SLA	0.348	105.204**	0.536
LNc	5.995*	1873.199**	2.635
SNc	0.258	2474.758**	6.600**
RNc	0.497	2754.520**	6.463**
LNc/LA	1.428	3.019	0.874

*P<0.05, **P<0.01

area in this species. Such increased photosynthesis implies that *C. album* leaves have higher nitrogen use efficiency under the elevated CO_2 . This is because elevated CO_2 increases intercellular CO_2 in leaves and as a result, its increase allows RuBp carboxylase to capture more CO_2 .

CONCLUSION

Both A. patulus and C. album are components of early successional plant communities in abandoned fields, where the soil is rich in nutrients due to the large amount of fertilizer used during crop cultivation. Changes in

Fig. 3. Changes in specific leaf area (SLA, cm² g¹) of Chenopodium album and Amaranthus patulus in two levels of CO₂ and four levels of nitrogen nutrient. Notation is same as in Fig. 1

the proportions of two major components in such an assemblage in elevated CO_2 atmospheres, together with eutrophic environments, will influence the subsequent alternation of a plant community.

Furthermore, the results of the present study imply that the enriched CO_2 level possibly causes the changes in species composition, between cool climate origin species like *C. album* and warm climate origin species like *A. patulus.* The former may increase the proportional dominance while the latter may decrease when they are coexisting. However, C_3 species are generally categorized as cool-growing species, while C_4 species are warm-growing species (e.g. Akin and Burdick 1977; Fribourg *et al.* 1982). Warm-growing species generally increase in importance as the temperature increases, while the reverse is true for cool-growing species (Monson *et al.* 1983; Pearcy and Ehleringer 1984; Hunt *et al.* 1991). Thus if the C_3 species consistently responds more vigorously than the C_4 species under enriched CO_2 , as has been stated in the previous studies, then a competitive superiority of C_3 over C_4 may possibly be offset by global warming (Ling 1991).

Fig. 4. Changes in leaf area ration (LAR, $cm^2 g^{-1}$) of Chenopodium album and Amaranthus patulus in two levels of CO_2 and four levels of nitrogen nutrient. Notation is same as in Fig. 1.

Nevertheless, because of the limited knowledge of CO_2 effects and of the complexity of interactive effects between CO_2 and other factors, such as level of available resources, herbivores and pathogens, and species-specific response to the elevated CO_2 , predictions about the future impact of the rising CO_2 and associated climate changes are very tenuous (Bazzaz 1990).

Moreover, it is well known that photosynthetic capacity tends to decrease after long-term exposure to elevated CO_2 (Arp 1991; Kirschbaum *et al.* 1994; Morgan *et al.* 1994). This photosynthetic acclimation may be due to the feedback inhibition resulting from an imbalance between supply and demand of carbohydrates. Aspects of experimental conditions, such as volume of pots, may affect the sink size by restricting root growth (Arp 1991). The plants with reduced photosynthetic capacity under elevated CO_2 often show lower leaf nitrogen concentrations and/or partition less of their nitrogen into photosynthetic enzymes (Newton 1991; Conroy 1992). The fact that nitrogen content in *C. album* decreases under elevated CO_2 indicates that photosynthetic acclimation may occur when

Pertanika J. Sci. & Technol. Vol. 3 No. 2, 1995

Fig. 5. Changes in nitrogen content (mg g¹) in leaves, stems and roots of Chenopodium album and Amaranthus patulus in relation to the CO₂ enrichment and nitrogen nutrient treatment at 30 days after the experiment. Ap: Amaranthus patulus, Ca: Chenopodium album. 350: 350 ppm in CO₂ concentration, 700: 700 ppm.

this species is exposed to long-term elevated CO_2 . In this sense, competitive balance between the two annual forbs chosen for the present study may not necessarily shift in favour of *C. album* under elevated CO_2 . However, in natural conditions where sufficient nutrients are available, such a reduced photosynthetic capacity may not occur as Arp (1991) suggested, and competitive superiority of *C. album* may not be constrained.

Decrease in foliar nitrogen content with increased CO_2 will result in lower nutrients in the litter and ultimately influence the nutrient cycle in the soil (Bazzaz 1990; Bazzaz and Fajer 1992). Furthermore, it has been noted that the consumption rate of insect herbivores feeding on plants grown in elevated CO_2 is higher than of those feeding on the plants grown in ambient CO_2 (Fajer 1989; Lincoln and Couvet 1989; Johnson and Lincoln 1990). This is probably due to insect herbivores compensating for lower nitrogen uptake in nitrogen poor foliage (Bazzaz 1990). Therefore, positive responses to increased CO_2 in some plants do not

necessarily lead to increases in production of the entire ecosystem. The changes in nitrogen content caused by elevated CO_2 may, in the long term, be more important in changing community structure than more obvious differences such as biomass and morphological characteristics (Garbutt *et al.* 1990).

ACKNOWLEDGMENT

We are grateful to Ms. M. Ichijo and Ms. K. Yamaguchi for their immense help during the experiment.

REFERENCES

- AKIN, D.E. and D. BURDICK. 1977. Rumen microbial degradation of starch-containing bundle sheath cells in warm-season grass. Crop Sci. 17: 529-533.
- ARP, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO₃. *Plant, Cell and Environment* 14: 869-875.
- BAZZAZ, F.A. 1990. The response of natural ecosystems to the rising global CO₂ levels. Ann. Rev. Ecol. Syst. 21: 167-196.
- BAZZAZ, F.A. and R.W. CARLSON. 1984. The response of plants to elevated CO₂. I. Competition among an assemblage of annuals at two levels of soil moisture. *Oecologia* 62: 196-198.
- BAZZAZ, F.A. and E.D. FAJER. 1992. Plant life in a CO₂-rich world. Scientific American 266: 18-24.
- BAZZAZ, F.A., K. GARBUTT, E.G. REEKIE and W.E. WILLIAMS. 1989. Using growth analysis to interpret competition between a C_3 and a C_4 annual under ambient and elevated CO_2 . *Oecologia* **79**: 223-235.
- BOWES, G. 1991. Growth at elevated CO₂: photosynthetic responses mediated through Rubisco. Plant, Cell and Environment 14: 795-806.
- BOWMAN, W.D. and B.R. STRAIN. 1987. Interaction between CO₂ enrichment and salinity stress in the C₄ non-halophyte Andropogon glomeratus. Plant Cell Environ. 10: 267-270.
- BROWN, K. and K.O. HIGGINBOTHAM. 1986. Effects of carbon dioxide enrichment and nitrogen supply on growth of boreal tree seedlings. *Tree Physiology* 2: 223-232.
- BUSH, M.B., D.R. PIPERNO, P.A. COLINVAUX, P.E. DE OLIVEIRA, L.A. KRISSEK, M.C. MILLER and W.E. ROWE. 1992. A 14300-yr paleoecological profile of a lowland tropical lake in Panama. *Ecological Monograph* 62: 251-275.
- CARLSON, R.W. and F.A. BAZZAZ. 1980. The effects of elevated carbon dioxide concentrations of growth, photosynthesis, transpiration, and water use efficiency of plants. In *Environmental and Climatic Impact of Coal Utilization*, ed. J.J. Singh and A. Deepak, p. 609-623. New York: Academic Press.
- CONROY, J.P. 1992. Influence of elevated atmosphere CO₂ concentrations on plant nutrition. Australian J. Botany 40: 445-456.
- CURTIS, P.S., B.G. DRAKE, P.W. LEADLEY, W.J. ARP and D.F. WHIGHAM. 1989. Growth and senescence in plant communities exposed to elevated CO₂ concentrations on an estuarine marsh. *Oecologia* 78: 20-26.

- DAVIS, M.B. 1989. Lags in vegetation response to greenhouse warming. *Climatic Change* 15: 79-82.
- DAVIS, M.B. and D.B. BOTOKIN. 1985. Sensitivity of cool-temperature forests and their fossil pollen record to rapid temperature change. *Quaterary Res.* 23: 327-340.
- DOWNTON, W.J.S., W.J.R. GRANT and B.R. LOVEYS. 1987. Carbon dioxide enrichment increase vield of valencia orange. Aust. J. Plant Physiol. 14: 493-501.
- EAMUS, D. 1991. The interaction of rising CO₂ and temperature with water use efficiency. Plant, Cell and Environment 14: 843-852.
- EMANUEL, W.R., H.H. SHUGART and M.P. STEVENSON. 1985. Climate change and the broad scale distribution of terrestrial ecosystem complexes. *Climate Change* 7: 29-43.
- FAJER, E.D. 1989. The effects of enriched CO₂ atmospheres on plant-insect herbivore interactions: growth responses of larvae of the specialist butterfly, *Junonia coenia* (Lepidoptera: Nymphaliadae). *Oecologia* 81: 514-520.
- FAJER, E.D., M.D. BOWERS and F.A. BAZZAZ. 1989. The effects of enriched carbon dioxide atmospheres on plant-insect herbivore interactions. *Science* 243: 1198-1200.
- FAJER, E.D., M.D. BOWERS and F.A. BAZZAZ. 1991. Enriched CO₂ atmospheres and the growth of the buckeye butterfly, *Junonia coenia. Ecology* **72**: 751-754.
- FORD, M.A. and G.N. THORNE. 1967. Effect of carbon dioxide concentration on growth of sugar-beet, barley, kale, and maize. *Ann. Bot.* **31**: 629-644.
- FRIBOURG, H.A., R.J. CARLISLE and V.H. REICH. 1982. Yields of warm- and cool-season forage on adjacent soils. Agronomy J. 74: 663-667.
- GARBUTT, K., W.E. WILLIAMS and F.A. BAZZAZ. 1990. Analysis of the differential response of five annuals to elevated CO₂ during growth. *Ecology* **71**: 1185-1194.
- GOUDRIAAN, J. and H.E. DE RUITER. 1983. Plant growth in response to CO₂ enrichment at two levels of nitrogen and phosphorus supply. I. Dry matter, leaf area and development. *Neth. J. Agric. Sci.* 31: 157-169.
- HEWITT, E.J. 1966. Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, Bucks: Commonwealth Agricultural Bureaux.
- HOGAN, K.P., A.P. SMITH and L.H. ZISKA. 1991. Potential effects of elevated CO₂ and changes in temperature on tropical plants. *Plant, Cell and Environment* 14: 763-778.
- HUNT, H.W., J.J. TRLICA, E.F. REDENTE, J.C. MOORE, J.K. DETLING, T.G.F. KITTEL, D.E. WALTER, M.C. FOWLER, D.A. KLEIN and E.T. ELLIOT. 1991. Simulation model for the effects of climate change on temperate grassland ecosystems. *Ecological Modelling* 53: 205-246.
- HUNT, R. 1990. Basic Growth Analysis. Boston: Unwin Hyman.
- JOHNSON, R.H. and D.E. LINCOLN. 1990. Sagebrush and grasshopper responses to atmospheric carbon dioxide concentration. *Oecologia*: 84: 103-110.
- KIMBALL B.A. 1983. Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agr. J. 75: 779-788.
- KIRSCHBAUM, M.U.F., D.A.KING, H.N. COMINS, R.E. MCMURTRIE, B.E. MEDLYN, S. PONGRACIC, D. MURTY, H. KEITH, R.J. RAISON, P.K. KHANNA and D.W.SHERIFF. 1994. Modelling forest response to increasing CO₂ concentration under nutrient-limited condition. *Plant, Cell and Environment* 17: 1081-1099.

- LARIGAUDERIE, A., D.W. HILBERT and W.C. OECHEL. 1988. Effect of CO₂ enrichment and nitrogen availability on resource acquisition and resource allocation in a grass, *Bromus* mollis. Oecologia 77: 544-549.
- LAWLOR, D.W. and R.A.C. MITCHELL. 1991. The effects of increasing CO₂ on crop photosynthesis and productivity: a review of field studies. *Plant, Cell and Environment* 14: 807-818.
- LEADLEY, P.W. and J.F. REYNOLDS. 1988. Effects of elevated carbon dioxide on estimation of leaf area and leaf dry weight of soybean. *American J. Botany* **75**: 1771-1774.
- LIETH, J.H., J.F. REYNOLDS and H.H. ROGERS. 1986. Estimation of leaf area of soybeans grown under elevated carbon dioxide levels. *Field Crops Research* 13: 193-203.
- LINCOLN, D.E. and D. COUVET. 1989. The effect of carbon supply on allocation to allelochemicals and caterpillar consumption of peppermint. *Oecologia* 78: 112-114.
- LONG, S.P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO₂ concentrations: Has its importance been underestimated? *Plant, Cell and Environment* 14: 729-739.
- LUXMOORE, R.J., E.G. O'NEILL, J.M. ELLIS and H.H. ROGERS. 1986. Nutrient-uptake and growth responses of Virginia pine to elevated atmospheric CO₂. J. Environ. Qual. 15: 244-251.
- MATTSON, W.T. 1980. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11: 119-161.
- MONSON, R.K., R.O. LITTLEJOHN, Jr. and G.J. WILLIAMS III. 1983. Photosynthetic adaptation to temperature in four species from the Colorado shortgrass steppe: a physiological model for coexistence. *Oecologia* 58: 43-51.
- MOONEY, H.A., B.G. DRAKE, R.J. LUXMOORE, W.C. OECHEL and L.F. PRITELKA. 1991. Predicting ecosystems responses to elevated CO₂ concentrations. *BioScience* 14: 96-104.
- MORGAN, J.A., H.W. HUNT, C.A. MONZ and D.R. LECAIN. 1994. Consequences of growth at two carbon dioxide concentrations and two temperatures for leaf gas exchange in *Pascopyrum smithii* (C_n) and *Bouteloua gracilis* (C_n). *Plant, Cell and Environment* 17: 1023-1033.
- MOUSSEAU, M. and H.Z. ENOCH. 1989. Effect of doubling atmospheric CO₂ concentration on growth, dry matter distribution and CO₂ exchange of two-year-old sweet chestnut trees (*Castanea sativa* Mill.). Ann. Sci. For. (Suppl.) **46**: 506-508.
- NEWTON, P.C.D. 1991. Direct effects of increasing carbon dioxide on pasture plants and communities. New Zealand J. Agricultural Research 34: 1-24.
- NORBY, R.J., E.G. O'NEILL and R.J. LUXMOORE. 1986. Effects of atmospheric CO₂ enrichment on the growth and mineral nutrition of *Quercus alba* seedlings in nutrient-poor soil. *Plant Physiol.* 82: 83-89.
- OBERBAUER, S.F., B.R. STRAIN and N. FETCHER. 1985. Effect of CO₂-enrichment on seedling, physiology and growth of two tropical tree species. *Physiologia Plantarum* 65: 352-356.
- PATTERSON, D.T. and E.P. FLINT. 1982. Interacting effects of CO₂ and nutrient concentration. Weed Sci. **30**: 389-394.
- PATTERSON, R. and A.J.S. MCDONALD. 1994. Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO₃. Photosynthesis Research 39: 389-400.

- PEARCY, R.W. and J. EHLERINGER. 1984. Comparative ecophysiology of C₃ and C₄ plants. *Plant, Cell and Environment* 7: 1-13.
- POTVIN, C. and B.R. STRAIN. 1985. Photosynthetic response to growth temperature and CO₂ enrichment in two species of C₄ grasses. *Can. J. Bot.* **63**: 483-487.
- ROGERS, H.H., J.F. THOMAS and G.E. BINGHAM. 1983. Responses of agronomic and forest species to elevated atmospheric carbon dioxide. *Science* 220: 428-429.
- SASEK, T.W. and B.R. STRAIN. 1990. Implications of atmospheric CO₂ enrichment and climatic change for the geographical distribution of two introduced vines in the U.S.A. *Climatic Change* 16: 31-52.
- SHUGART, H.H. and W.R. EMANUEL. 1985. Carbon dioxide increase: the implications at the ecosystem level. *Plant, Cell Environ.* 8: 381-386.
- SMITH, S.D., B.R. STRAIN and T.D. SHARKEY. 1987. Effects of CO₂ enrichment on four Great Basin grasses. Funct. Ecol. 1: 139-143.
- STITT, M. 1991. Rising CO₂ levels and their potential significance for carbon flow in photosynthetic cells. *Plant, Cell and Environment* 14: 741-762.
- STRAIN, B.R. and F.A. BAZZAZ. 1983. Terrestrial plant communities. In CO₂ and Plants: The Response of Plants to Rising Levels of Atmospheric Carbon Dioxide, ed. E.R.Lemon, p. 177-222, Boulder: Westview.
- STRAIN, B.R. and J.D. CURE. 1985. Direct Effects of Increasing Carbon Dioxide on Vegetation. Springfield: US Dep. Energy, NTIS.
- TOLLEY, L.C. and B.R. STRAIN. 1984. Effects of CO₂ enrichment on growth of *Liquidambar* styraciflua and *Pinus taeda* seedlings grown under different irradiance levels. *Can. J. For. Res.* **14**: 343-350.
- TOLLEY, L.C. and B.R. STRAIN. 1985. Effects of CO₂ enrichment and water stress on gas exchange of *Liquidambar styraciflua and Pinus taeda* seedlings grown under different irradiance levels. *Oecologia* 65: 166-172.
- Wong, S.C. 1979. Elevated atmospheric partial pressure of CO_2 and plant growth. I. Interaction of nitrogen nutrition and photosynthetic capacity in C_3 and C_4 plants. *Oecologia* 44: 69-74.
- ZANGERL, A.R. and F.A. BAZZAZ. 1984. The response of plants to elevated CO₂. II. Competitive interactions among annual plants under varying light and nutrients. *Oecologia* 62: 412-417.