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ABSTRAK
Kertas ini membincangkan kaedah butstrap tak berparameter bagi menentukan
ralat piawai anggaran parameter model regresi ortogon. Kaedah butstrap
persentil, persentil pincang dibetulkan, persentil pincang dibetulkan secara pantas
(BCA) dan BCA terlelar digunakan bagi membina selang keyakinan bagi
parameter model tersebut. Daripada kajian simulasi yang dijalankan didapati
selang keyakinan berdasarkan kaedah BCA terlelar mememuhi ciri-eiri selang
keayakinan yang dikehendaki.

ABSTRACT
This paper discusses the nonparametric bootstrap method for evaluating the
standard errors of the parameter estimates of orthogonal regression. The
percentile, bias-corrected, the bias-corrected and accelerated (BCA) , and the calibrated or
iterated BCA method were considered for confidence intervals for the param
eters of the model. Based on simulation studies, it was found that the iterated
BCA method produced a more reliable confidence interval than the other
methods.
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INTRODUCTION

Consider a pair of variables (~, 7J) satisfying a linear relationship 7J = a + f3~ ,
with a and {3 to be estimated; (~, 7J) cannot be observed directly. Instead,
(~,7J) are both observed with errors, i.e., we observe the pair (xi' y) where

(1)

Yi = 7J; + c;

with errors 0i and c;, respectively. The g;} are (fixed) mathematical
variables. The model (1) is known as a linear functional relationship (LFR).
We shall consider the special case in which the variance ratio A= V(c; ) / V(0;) = l.
With this specification, the LFR in (1) is better known as the orthogonal
regression model.



(2) (i)
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Two approaches to the estimation of the parameters have been dis
cussed in the literature. In the maximum likelihood estimation (MLE) (Kendall
and Stuart 1973: Chapter 29; Fuller 1987) it is assumed that the observa
tions (Xi' y) are independent N(gj,o-2) and N( a+ f3~i,(J2) variates, respec
tively, for i=l, ... ,n. A more general formulation for estimating the param
eters in (1) is the generalized least squares estimation (GLSE) (Sprent 1966).
In the GLSE approach no assumptions are made about the distributions
of the observations. The GLSE approach chooses the estimators of a and
{3 which minimize

Both the MLE and GLSE estimations yield identical estimators of a and {3, i.e.,

h (Syy - Sxx)+ ~( Syy - Sxx)2 + 4S;y
f3 = -------'-----

2SXY

where
- -1...,x= n ~Xi

- -I...,
,y= n ~Yi

(2) (ii)

Patefield (1977) derives the asymptotic variance-covariance matrix of
the maximum likelihood estimators of a and {3. When cr is unknown, a
consistent estimator of the variance-eovariance matrix is

(
A)-2Aj S [X(l+i)+SxY 1~-X(l+i)]

1+ p (j p n xy -x(l+i) (I+i)

where

(3)

and
- 2 2na-2

(J =---
(n- 2)

is the consistent estimator of (J2 and a-2 is the maximum likelihood estima
tor of (J2.

Based on the normality assumptions Kendall and Stuart (1973) con
structed a 100(1- y) % confidence interval for {3. The confidence limits for
{3 are given by
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(4)

where tn- 2,r/2 is the (1--y / 2) percentile point of the t distribution with n-2
degrees of freedom,

Our interest is to examine an alternative approach to the parametric
confidence interval in (4) which does not rely on the normality assump
tion, This paper discusses, via a simulation study, the use of the
nonparametric bootstrap method to assess the standard error and confi
dence intervals for the parameters of the model. The use of the
nonparametric bootstrap method is justified since the estimators in (2) (i)
(ii) can be considered as being derived from a general formulation which
makes no normality assumptions about the observations.

BOOTSTRAPPING THE ORTHOGONAL REGRESSION
Let the model (1) be written in the form

where

Let F denote the common distribution function of the Zi and the param
eter vector e = (a, (3)T. As shown in the previous section, existing methods
for estimating the statistical accuracy of the estimators are largely asymp
totic, and may not apply in finite samples. The bootstrap method, how
ever, may overcome this difficulty as it automatically produces accuracy of
the estimates and it can be applied in a wide range of situations.

BOOTSTRAP STANDARD ERRORS

The bootstrap method advocated by Efron (1979) works by sampling from
the empirical distribution function of F, denoted by F

n
, and then estimating

the parameter e(F) by e(F). The sampling distribution of e(F) is esti
mated by simulating that of e(Fn)' This is done by repeatedly drawing
'resamples' from the original sample 'with replacement' and for each
resample calculating a value of e(Fn) .
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Suppose we are interested in obtaining a bootstrap distribution of
A ( ")T "() = a,f3 where a and 13 are given by (2)(i)-(ii), respectively. We may

proceed by calculating Monte Carlo approximations baseq on tqeTcom
plete observation vector z;, The bootstrap distribu tion of () = ( a,f3) may
be approximated by drawing B samples of size n from

F
n

: mass lin at Zi = C:) i= 1,... , n, each time creating pseudo-data set

z; =(~D from which i/ =(aO,~ot is calculated from

(S Ob SOb) (S*b _S*b)2 + 4S*b2
13
"°b = yy - xx + yy xx xy

2S*b ,b = I,K ,B
xy

"*b -*b f30b-*ba = y - x

(2) (i)

(2) (ii)

where
_Ob -1" *b
X = n L.J X j

-*b -1" *b,y = n L.J Yj

and

S;; = I (Xj*b - XOb )2 ,S;~ = I (y;b - yObr ,S;; = I (X;b _X*b)( y;b _yOb).

After drawing B bootstrap samples, we use the resulting bootstrap estimates

i/ = (a 0, ~*t to calculate the standard errors of the estimates e= (a.pr. i.e.

r
- 21

1

/

2I -Ob -
s.e ( e) = (() - e) where

~ (B-1)

NONPARAMETRlC BOOTSTRAP CONFIDENCE INTERVALS
In a series of papers, Efron (1979, 1982, 1987) and Efron and Tibshirani
(1993) have developed procedures for constructing approximate confi
dence intervals for a statistic of interest. The procedures rely on estimating
the sampling distribu tion of a statistic or an approximate pivot. We shall
consider four popular methods, namely the percentile, the bias-corrected
(BC) percentile, the bias-corrected and accelerated (RCA), and the iter
ated BCA methods.
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The percentile method takes the interval 100')' and 100(1-')') percen

.* (. * .*)T .tiles of the bootstrap distribu tion of e = ex , f3 , G< s). If

where Pr* indicates probabili ty compu ted according to the bootstrap

distribution of f/ =(cX',P'r, then 100(1-2)')% approximate interval for

6=(a,I3)T is

[8-1(y), 8-1(1- y)]

The bias-corrected (BC) method is given by

(5 )

(6)

where Zo is the bias correction factor and both z and Zo are standard
normal distribution functions. If zo=O, then the BC method reduces to the
percentile method. The disadvantage of both the percentile and the BC
methods is that they have less satisfactory coverage properties.

An improved version of the percentile and the Be methods is the bias
corrected and accelerated (BCA) method. The BCA has better coverage
properties because it is second-order accurate. This means that for a central
(1-2)') confidence interval (BL,BU) its errors in matching the probability a
of not coverinpth~ true value of efrom above (i.e., pr{e> au} =a) or from

below (i.e., Prt e> eL } = 0:1 go to zero at rate 1In, for a sample of size n.
The percentile and the {)C methods are only first-order accurate because
their errors in matching a go to zero at a slower rate, i.e., 1I yn (Efron
and Tibshirani 1993: 187). The BCA intervals are transformation respecting,

meaning that the BCA endpoints transform correctly if a parameter of
interest e is changed to some function of e.

In the BCA method the percentiles of the bootstrap distribution are
also used to form the endpoints of the intervals. However, the percentiles
used are now determined by the bias-correction and acceleration factors.
Let a denote the acceleration factor, then the BCA interval with (1-2)')
coverage is given by
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where

Yt = ¢-l {zo + (zo + z(r)) /(1- a(Zo + z (r))))

Y21 =¢-l{zo+(zo+z(l-r ));(I-a(zo =z(l-r )))}

zo= ¢-l{(no. of (}*s < e)/ B}
11 ~ ~ 3 {II ~ ~ 2}3/2

a = i~(8(.) - 8_i) / 6 i~(80 - B_i ) ,eO = n-
1
IB_i

where <t> (.) is the standard normal cumulative distribuLion function and (}-i is
the estimate with the i-th observaLion deleted.

As pointed out by Efron and Tibshirani (1993), the actual coverage of
a bootstrap confidence procedure is rarely equal to the desired (nominal)
coverage and is often substantially different. One way to achieve the
coverage is by use of calibration. The idea of calibration of the bootstrap
was first discussed by I-Iall (1986, 1987) and Loh (1987,1991). Booth and
Hall (1993) discussed the calibraled confidence interval which is also
known as the iteraled confidence interval in the context of function errors
in-variables model.

The iterated or calibrated confidenCe interval can be constructed as
follows; Compute A.-level confidence points

(8)

for a grid of values of A.. For example, these might be the normal
confidence points

·(I_.l.)s.e(e*)] ,b=I,K ,8

For each A. compute

P(A) ={no. of e::; 9~(b)11 B

and
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Find the value of -y that satisfies

p{A) =P{1- A) =a / 2

The calibration process can be applied to any bootstrap method. In
this paper we consider the calibration on the RCA method. With the
calibrated BCA method the resulting confidence interval has the desired
properties, i.e., it is second-order accurate, transformation-respecting and
also has the correct nominal coverage.

EXAMPLE
The data are from Miller (1980) and have been analysed by Kelly (1984)
using errors-in-variables model. They consist of simultaneous pairs of
measurements of serum kanamycin levels in blood samples drawn from 20
babies. A heelstick method on umbilical catherer was used to measure the
levels. It was reasoned that the assumption -Y= 1 was correct, A scatterplot
of these twenty pairs of observations is illustrated in Fig. 1.

2

o..,

'"N

o
N

15 20

heelstick

25 30

Fig. 1. Serum kanamycin levels (calherer us heelslick)
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The estimates based on (2) (i)-(ii) were

a== -1.16, f3 == 1.07

The consistent estimate of cr is 0- 2 == 1.53. The standard error of the
estimated slope and the corresponding 90% confidence interval based on
the exact normal (asymptotic) theory and the bootstrap methods are
presented in Table 1. In bootstrap methods we used B == 1000.

Table 1 displays summary statistics pertaining to the bootstrap analy
ses. The bootstrap standard error is relatively close to that of the normal
theory. Two properties associated with aU the confidence intervals are
their lengths and shapes, respectively (Efron 1987). "Shape" measures the
asymmetry of the interval about the point estimate. An interval is said to
be symmetrical if shape == 1. Shape> 1 indicates asymmetry with greater
distance from the upper limit to the point estimate than from the point
estimate to the lower limit. The bias-corrected interval is shorter than the
other intervals and the iterated nCA produces the longest confidence
interval among those considered. AU the confidence intervals, except the
iterated BCA, indicate sOll}e degree of ~symmetry with greater distances
from the upper limits to f3 than from f3 to the lower limits.

TABLE I

Standard errors of f3 and 90% confidence interval for 13

Standard error of f3
Exact (normal-theory) 0.160
Bootstrap (B==1000) 0.182

90% Confidence Interval for 13

Lower Upper Length Shape

Exact (NormaHheory) 0.811 1.418 0.607 1.347
Percentile 0.797 1.420 0.623 1.281
BC 0.855 1.438 0.583 1.713
BCA 0.871 1.493 0.622 2.130
Iterated BCA 0.710 1.493 0.783 1.178

Tables 2-4 iUustrate the exact (normal-theory), the percentile, the BC,
the ECA, and the iterated BCA confidence intervals for the slope parameter.
The exact confidence interval is given by (4) and the booL~trap intervals are
given by (5)-(8), respectively. Tabulated characteristics for confidence inter
vals are average values of lower and upper endpoints, lengths, shape, and
also estimated coverages of the in tervals (with nominal coverage 90%).
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It is clear from Tables 2-4 that in most cases the percentile, the BC,
and the BCA intervals suffer from moderate undercoverage when the
underlying population is non-normal. The exact confidence intervals also
suffer from moderate undercoverage even in the case of normal popUla
tion. The strength of the iterated BCA method is that it yields confidence
intervals that have coverage equal to the desired nominal 90% coverage.
However, the iterated BCA intervals tend to show some degree of asymme
try and are slightly longer than the other intervals.

TABLE 2
Exact and bootstrap confidence intervals, n=20

Error-distr. Method

Normal

D-exp.

t(3)

Exact
Percentile
BC
BCA
Iter. BCA

Exact
Percentile
BC
BCA
Iter. BCA

Exact
Percentile
BC
BCA
Iter. BCA

Lower Upper Length Shape Coverage

0.914 1.108 0.194 1.102 0.85
0.907 1.097 0.189 1.167 0.90
0.903 1.090 0.187 1.034 0.90
0.888 1.094 0.207 J.ll6 0.91
0.891 1.130 0.239 1.214 0.90

0.918 1.112 0.194 1.102 0.92
0.918 1.101 0.127 1.127 0.87
0.916 1.098 0.182 1.109 0.84
0.919 1.100 0.181 1.169 0.84
0.902 1.136 0.234 1.197 0.90

0.862 1.227 0.364 1.197 0.87
0.853 1.213 0.360 1.202 0.87
0.859 1.210 0.355 1.163 0.85
0.853 1.210 0.357 1.216 0.88
0.817 1.320 0.502 1.486 0.90

CONCLUSION

The existing methods for evaluating the statistical accuracy of estimates of
the parameters of orthogonal regression model are largely asymptotic and
may not apply in finite samples. The non parametric bootstrap method has
facilitated the evaluations of standard errors and confidence intervals for
the parameters of the model. A limited simulation study presented in this
paper shows that the iterated RCA method, in particular, provides a
reliable method for constructing a non parametric confidence interval.
The method produces a confidence interval that has the most desirable
properties, i.e., it is second-order accurate, transformation-respecting, and
has a correct nominal coverage.
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TABLE 3
Exact and bootstrap confidence intervals, n=30

Error-distr. Method Lower Upper Length Shape Coverage

Normal Exact 0.942 1.043 0.101 1.052 0.87
Percentile 0.952 1.048 0.096 0.988 0.89
BC 0.951 1.047 0.096 0.973 0.91
BCA 0.944 1.049 0.104 1.051 0.91
Iter. BCA 0.935 1.067 0.132 1.123 0.90

D-exp. Exact 0.951 1.052 0.102 1.052 0.90
Percentile 0.952 1.051 0.099 1.028 0.89
BC 0.948 1.048 0.100 0.951 0.85
BCA 0.941 1.051 0.110 1.025 0.85
Iter. BCA 0.937 1.065 0.128 1.068 0.90

t(3) Exact 0.951 1.051 0.186 1.097 0.89
Percentile 0.911 1.095 0.183 1.031 0.84
BC 0.912 1.096 0.183 1.061 0.84
BCA 0.900 1.099 0.200 1.138 0.86
Iter. RCA 0.889 1.130 0.241 1.118 0.90

TARLE 4
Exact and bootstrap confidence intervals, n=50

Error-distr. Method Lower Upper Length Shape Coverage

Normal Exact 0.978 1.025 0.047 1.024 0.84
Percentile 0.979 1.023 0.044 0.960 0.86
BC 0.979 1.023 0.044 0.010 0.83
BCA 0.968 1.024 0.063 1.050 0.83
Iter. RCA 0.970 1.028 0.058 1.061 0.90

D-exp. Exact. 0.978 1.024 0.046 1.023 0.94
Percentile 0.979 1.022 0.043 1.142 0.88
BC 0.976 1.019 0.044 0.877 0.86
BCA 0.928 1.020 0.092 1.886 0.85
Iter. RCA 0.974 1.032 0.057 1.186 0.90

t(3) Exact 0.958 1.040 0.082 1.042 0.88
Percentile 0.959 1.035 0.076 1.000 0.87
BC 0.959 1.035 0.076 1.022 0.87
BCA 0.951 1.037 0.085 1.114 0.90
Iter. BCA 0.949 1.050 0.101 1.085 0.09

Pcrtanika J. Sci. & Technol. Vol. 3 No.2, 1995



On Bootstrap Methods in Orthogonal Regression Model

ACKNOWLEDGEMENT
The author wishes to acknowledge the helpful and constructive comments
by the referees.

REFERENCES
BOOTH,j.G. and P. HALL. 1993. Bootstrap confidence regions for functional relationships

in errors-in-variables models. Annals ojStatistics 21: 1780-1791.

EFRON, B. 1979. Bootstrap methods: Another look at the jackknife. Annals oJStatistics 7: 1-26.

EFRON, B. 1982. TheJackknife, the Bootstrap and Other Resamp/ing Plans. Phil: SIAM.

EFRON, B. 1987. Better bootstrap confidence intervals. Journal oj the American Statistical
Association 82: 171-200.

EFRON, B. and RJ. TlBSHlRANI. An Introduction to the Bootstrap. New York: Chapman and Hall.

FULLER, WA. 1987. Measurement Error ModeL5. New York: Wiley.

HALL, P. 1986. On the bootstrap and confidence in lcrvals. Annals oJStatisties 14: 1431-1452.

HALL, P. 1987. On the bootstrap and likelihood-based confidence intervals. Biometrika 74:
481-493.

KELLY, G.E. 1984. The inOuence function in the errors in variables problems. Annals oj
Statistics 12: 87-100.

KENDALL, M.G. and A. STUART. 1973. The Advanced Theory oj Statistics. London: Griffin.

LOH, W.-Y. 1987. Calibrating confidence coefficien L~. Journal ojAmerican Statistical Associa
tion 82: 15~162.

LoH, W.-Y. 1994. Bootstrap calibration for confidence construction and selection. Statistica
Sinica 82: 15~162.

MILLER, R.G.Jr. 1980. Kanamycin levels in premature babies. Biostatistics Casebook, III: 127
142. Technical Report No. 57, Division of Biostatistics, Stanford University.

PATEFlELD, W.M. 1977. On the information matrix in the linear functional relationship
problem. Applied Statistics 26: 69-70.

SPRENT, P. 1966. A generalised least squares approach to linear functional relations. Journal
oj the Royal Statistical Society B 28: 278-297.

Penanika J. Sci. & Technol. Vol. 3 No.2, 1995 359


