
Pertanika J. Sci. & Techno!. 8(2):161-174 (2000)
ISSN: 0128-7680

© Universiti Putra Malaysia Press

An Efficient Parallel Quarter-sweep Point Iterative Algorithm
for Solving Poisson Equation on SMP Parallel Computer

Othman M.· and Abdullah A. R.b

aDepartment of Communication Technology and Network
Faculty of Computer Science and Information Technology

University Putra Malaysia
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

E-mail: mothman@fsktm.upm.edu.my
bDepartment of Industrial Computing, University Kebangsaan Malaysia

43600 UKM Bangi Selangor Darul Ehsan, Malaysia

Received: 13 October 1998

ABSTRAK

Satu algoritma lelaran titik terbaru yang menggunakan pendekatan suku
sapuan telah menunjukkan masa pelaksanaan yang lebih cepatjika dibandingkan
dengan algoritma lelaran titik penuh- dan separuh- sapuan untuk menyelesaikan
persamaan Poisson dua dimensi (Othman el at. (1998». Walau bagaimanapun,
dua algoritma terakhir sesuai diimplementasikan secara selari (Evans (1984)
dan Ali el at. (1997». Dalam makalah ini, pengimplementasian algoritma
selari yang terbaru dengan menggunakan strategi papan catur pada komputer
selari multipemproses simetri akan diterangkan. Keputusan eksperimen daripada
satu masalah kajian dibandingkan dengan keputusan dua algoritma selari
terakhir.

ABSTRACf

A new point iterative algorithm which uses the quarter-sweep approach was
shown to be much faster than the full-and half- sweep point iterative algorithms
for solving two dimensional Poison equation (Othman el at. 1998». However,
the last two algorithms were found to be suitable for parallel implementation
(Evans 1984) and Ali el at. (1997». In this paper, the parallel implementation
of the new algorithm with the chessboard (CB) strategy on Symmetry Multi
Processors (SMP) parallel computer was presented. The experimental results
of a test problem were compared with the later two parallel algorithms.

Keywords : Poisson equation, Parallel algorithms, Chessboard strategy, Full-,
half- and quarter-sweep approaches, Performance evaluation

INTRODUCTION

The parallel point iterative algorithm which incorporates the full-sweep approach
for solving a large and sparse linear system has been implemented successfully
by Barlow and Evans (1982), and Evans(1984) while the half-sweep approach
was introduced by Abdullah (1991) for the derivation of the four points EDG

Othman M. and Abdullah A. R.

method. Since the EDG method is explicit, it is suitable to be implemented in
parallel on any parallel computer. Yousif and Evans (1995) implemented the
parallel four, six and nine points EDG methods for solving the two dimensional
Poisson equation, while Ali and Abdullah (1997) implemented the parallel
point iterative algorithms which use the full- and half-sweep approaches for
solving the two dimensional diffusion-<:onvection equation. All the parallel
point and block iterative algorithms were implemented on MIMD Sequent
B8000 computer system at Parallel Algorithm Research Center (PARC) ,
Loughborouh University of Technology, United Kingdom. In the case of point
iterative algorithm, the results obtained shown that the parallel point iterative
algorithm which uses the half-sweep approach is relatively faster than the
parallel full-sweep point iterative algorithm. This is due to the lower total
computational operations in the algorithm since only half of the total points
are involved in the iterations.

In a more recent development, Othman et at. (1998) introduced a new
point iterative algorithm which uses the quater-sweep approach for solving the
two dimensional Poisson equation on MIMD computer system, the Sequent
S27. The experimental and analytical results obtained have shown that the
algorithm is superior than the point iterative algorithms which use the full- and
half-sweep approaches. As we know, the iterative algorithm requires a tremendous
amount of computer time for solving a large and sparse linear system With the
advent of new emerging parallel computers, the parallel implementation of the
new algorithm when incorporated with the CB strategy will improve the
performance of the algorithm.

THE POINT ITERATIVE ALGORITHMS

The solution of two dimensional Poisson equation

(1)

in a unit square Qh with Dirichlet boundary condition using the finite difference
methods, resulted in a large system of equations which is usually solved
iteratively.

Assume equation (1) as our model problem defined in a unit square Qh

1
with spacings ~= l::1y = - = h in both x and y directions with Xi = Xo + ih and

n
y. = Yo +jh for all i, j = 0,1,2, , n. when equation (1) is discretized using finite
difference scheme , the most commonly used approximations is the standard
five-points stencil given by

162

V. I' + V. l' + v.. I + v.. 1 - 4v.. = h2f.
1 + •J 1 - • J I, J + I, J- IJ IJ.

PertanikaJ. Sci. & Techno!' Vo!' 8 No.2, 2000

(2)

An Efficient Parallel Quarter-sweep Point Iterative Algorithm

where vij is an approximation to the exact solution u(xi,y.) at the point (Xi' y)
= (ih, jh). Equation (1) can also be discretized using similar scheme with a
width of 2h and leads to the following stencil,

V. 2' + V. 2' + v.. 2 + v.. 2 - 4v.. = 4h2f..,
I + •J I - • J I, J + I, J - IJ IJ.

(3)

6

5

4

3

2

o
2 3 4 5 6

Fig 1. The solution domain Q!' with the chessboard (CB)
ordering strategy Jor 0 type oj points

Another type of approximation derived from the rotated finite difference
approximation can be obtained by rotating the x - y axis clockwise by 45°, Thus,
the rotated difference approximation for equation (1) become (Abdullah
(1991)),

V. 1 . 1 + V. 1 . 1 + V. 1 . 1 + V. 1 . 1 - 4v.. = 2h2f..I+.J+ ~.~ I+.~ ~.~ IJ IJ. (4)

Equations (2), (3) and (4) have been used in the derivation of the new
point iterative algorithm. A brief description of the full- and half-sweep points
iterative algorithms are given below.

FULLSWEEP POINT ITERATIVE ALGORITHM

Let us consider the solution at any point llh may be obtained using the stencil
five points finite difference approximation (equation (2», The SOR algorithm
involves may be described as follows

1. Define all the points in llh, see Figure 1. Compute the value of h2

beforehand and assign to a variable H,
2. Implement the relaxation procedure,

PertanikaJ. Sci. & Technol. Vol. 8 No.2, 2000 163

Othman M. and Abdullah A. R.

where the V~~+l) are the intermediate solutions of the (k + 1) th Gau~

Seidel iteration defined by

for all the points.
3. Check for convergence. If the iterative process converges, go to step (4),

otherwise, repeat the iteration cycle (Le. go to step (2)).
4. Stop.

Fig 2. The solution domain !1' with the horizontal zelJra line (HZL)
ordering strategy Jor 0 type oj points

HALF-SWEEP POINT ITERATIVE ALGORITHM

In this algorithm, the Qh is labelled into two types of points; 0 and 0 as shown
in Figure 2. The solution of any point either 0 or 0 can be implemented by only
involving the same type of point.

Using equation (4) and taking any group of two points (Le. 0 and D) in Qh
leads to the (2 x 2) system of equation,

[~ 0] [vi,j]_[Vi-1,j_l +vi+l,j_l +vi-1,j+l +vi+1,j+l -2h
2f

i,j} (5)
4 vi+l,j - Vi,j_l +vi,j+l +vi+2,j-l +vi+2,j+l -2h2fi+l,j

Splitting equation (5) leads to a decoupled group of (1 x 1) equations in
explicit form as,

164 PertanikaJ. Sci. & Techno!. Vo!. 8 No.2, 2000

An Efficient Parallel Quarter-sweep Point Iterative Algorithm

(6)

and

(7)

It is clear that equations (6) and (7) can be implemented by only involving
points of type 0 and 0, respectively. Therefore, the implementation of these
equations can be carried out independently and the execution time can be
reduced to nearly half if the iteration is carried out on either type of point.
Hence, we may now define the half-sweep point iterative algorithm as,

1. Divide the Qh into two types of point; 0 and 0, see Figure 2. Compute
the values of h2 and 2h2 beforehand and assign to variables H and I,
respectively.

2. Implement the relaxation procedure,

where the V~~+l) are the intermediate solutions of the (k + 1) th Gau~

Seidel iteration defined by

for all the 0 points.
3. Check for convergence. If the iterative process converges, evaluate the

solutions at the other half of points (Le. 0) using equation,

Vi,j = 0.25* (Vi+l,j +vi-l,j +vi,j-l +vi,j+l -H*h),

otherwise, repeat the iteration cycle (i. e. go to step (2)).
4. Stop.

QUARTER - SWEEP POINT ITERATIVE ALGORITHM

The Qh is labelled in three different types of points; e, 0 and 0 as shown in
Figure 3. A group of e points which involved in the iterative evaluations is about
a quarter of the total point for a large size of points. The solution of any e point
can be computed by only involving points of type e. Therefore, this computation
can be carried out independently from the other two types of points; 0 and O.

PertanikaJ. Sci. & Techno!. Vo!. 8 No.2, 2000 165

Othman M. and Abdullah A. R.

Due to this independency, we can theoretically save the execution time by
approximately a quarter if the iteration over the Qh is carried out only on the
• type of points. Mter the convergence criteria is achieved, the solutions of the
remaining two types of points are executed directly at once starting from point
type 0 and followed by 0 using the equations (4) and (2), respectively. Hence
, we may define the quarter-sweep point iterative algorithm as follows:

1. Divide the Qh into three types of point; ., 0 and 0, see Figure 3.
Compute the values of h2

, 2h2 and 4h2 beforehand and assign to
variables H, I and j, respectively.

2. Implement the relaxation procedure,

where the v.~~+l) are the intermediate solution of the (k + 1) th Gaut3

Seidel iteration defined by

for all the. points.
3. Check for convergence. If the iterative process converges, evaluate the

solutions at the other two points starting from point type 0 and followed
by 0 using the following

3.1.

3.2.

v..
'oJ

v..
I. J

0.25 * (v. l' 1 + v. 1 . I + V. I' 1 + v. l' 1 - I * J. .), and
1+ ,J+ 1· ,J- 1+ ,J- 1- ,J+ I.J

0.25 * (v. l' + v. 1 . + v.. 1 + v.. 1 - H * J. .),
I + •J 1· • J I, J + I, J • I, J

respectively. Otherwise, repeat the iteration cycle (i. e. go to step (2».
4. Stop.

The details of the algorithm can be found in Othman et at. (1998).

PARALLEL IMPLEMENTATION AND STRATEGIES

Assume the Qh is large with even size of points n. The optimal parallel strategy
of parallelizing the full-, half- and quarter- sweep point iterative algorithms have
been investigated and can be outlined as follows:

For Quarter-sweep Point Iterative Algorithm: From Figure 3, each • point or

task T
j
for all i = 1, 2,... , N with N = ~ (n -2)2 is assigned to available processor

one at a time in CB strategy. The static schedulling is employed in this

166 PertanikaJ. Sci. & Technol. Vol. 8 No.2, 2000

An Efficient Parallel Quarter-sweep Point Iterative Algorithm

10

9

8 ,-, 1""_'-' I

7

6

5

4

3

2

o 2 3 4 5 6 7 8 9 10

Fig 3. The solution domain go with the CB ordering strategy for. type of points

implementation. By applying equation (3) in turn with such strategy to each
task T

j
in Qh will leads to a linear system as

(8)

with the diagonal sub matrices Dr and Db of size (~ X ~) and each diagonal

element is equivalent to -4. Applying the Gaut3-Seidel to equation (8), we will
have

UJ[Ur J(k+l
l
= [f r J_[0 UJ [Ur J(k

l.
Db ub fb 0 0 ub

(9)

If the diagonal sub matrices D~l and Dbl exist, we can evaluate equation (9)

by first calculating

(10)

followed by

with the relaxation factor, ffi..

PertanikaJ. Sci. & Techno!. Vo!. 8 No.2, 2000

(11)

167

Othman M. and Abdullah A. R.

From equation (10), it is clear that all the tasks in U~k+l) are independent

of each other and can be computed in parallel. Mter U~k+l) has been completed,

equation (11) or U~k+l) can be calculated simultaneously using the updated

values of U~k+l) since these calculations are independent. At the end of each

stage, a synchronization call is executed to ensure the updated values are used
in the subsequent iteration. Each processor independently iterate on its own
task and check for its own local convergence. If the local convergence criteria
is achieved then the global convergence test is performed; otherwise repeat the
iteration cycle. If the global convergence criteria is achieved, the solutions at
the remaining tasks (Le. points of types 0 and 0) will be evaluated directly at
once, starting from points type 0 and followed by 0 using equations (4) and
(2), respectively. These direct evaluations can be executed in parallel by
assigning each remaining task in natural strategy to available processor one at
a time. Otherwise increase the number of iteration and repeat the iteration
cycle.

For Half-sweep Point Iterative Algorithm: The algorithm uses the horizontal
zebra line (HZL) strategy which consists of two stages of calculation upon each
iteration, see Figure 2. At the first stage, three rows of the 0 points or tasks T

j

are assigned to each processor in alternate order and the same happen in stage
two. Lines 1

1
,1

2
and 13 are assigned to PI' P2 arid P3, respectively. Mter calculating

all values at the half of the tasks in given lines in parallel, a synchronization call
takes place which marks the end of the first stage. In the second stages, lines
1
4

and Is are assigned to PI and P2 respectively while P
3

is keep on spinning. In
other words, a group of lines 11' 12, 13 is updated at stage 1 and then followed
by a second group of lines 14, Is which is updated in stage 2. By applying
equation (4) in turn to each group with such strategy, we will have a large linear
system

D1 U uti fllI

D
I2

U U ut 2
fl

2

DI, U ut, = fl, (12)

UT UT
D1• ut. fl.

uT UT
Dis uts fl s

where the diagonal sub matrices DII ' D12, D13 and D14' Dis of size (r~lxr~U and

(l~Jxl~], respectively with N = (n - 1) and the diagonal element is equivalent

to -4. Since there are two stages, equation (12) can be rewrite as the following
form

168 PertanikaJ. Sci. & Techno!. Vo!. 8 No.2. 2000

An Efficient Parallel Quarter-sweep Point Iterative Algorithm

(13)

By applying the Gaul3-Seidel to equation (13), we will have the following
equation

(14)

The explicit solution of equation (14) can be de-eoupled into the following
system of equations

and

U(k+l) = (1- CJ))U(k) + CJ) 6-1[B - CU(k)]
1 e 1 ell 2

U(k+l) = (1- CJ))U(k) +CJ) 6-I [B _ CTU(k+I)]
2 e 2 e2 2 1

(15)

(14)

A A

with the diagonal sub matrices D1 and D2 exist.

Clearly, we can see that all the tasks in U~k+l) are independent of each

other and can be computed in parallel. Each processor is assigned an

approximately equal number of tasks to work on. Mter U~k+l) has been

calculated, U~k+l) can be calculated simultaneously using the updated values of

U~k+l) since this calculation is independent. However, since the most recent

values of U~k+l) are to be used in equation (16), a synchronizing call has to be

made before the calculation of U~k+l) strats. Each processor then checks for its

local and global convergence criteria the same way as described in the previous
method. Once the global convergence is achieved, the solution at the remaining
tasks (i. e. points of type 0) will be evaluated directly in parallel at once using
equation (4) by assigning tasks of each row to different processor.

For Full-sweep Point Iterative Algorithm: All 0 points or tasks T
j
for all i =

1, 2, ... , N with N = (n _1)2 which involve in the process of iterative evaluation
are assigned to available processor one at a time in the CB strategy, see Figure
1. This strategy is the same as mentioned in the quarter-sweep point iterative
algorithm. If the local and global convergence criteria are achieved, the

PertanikaJ. Sci. & Techno\. Vo\. 8 No.2, 2000 169

Othman M. and Abdullah A. R.

TABLE 1
Relaxation factor w., no. of iteration, strategies and max. error

for an the parallel algorithms

h-I Method W. No. iteration Strategies Max. error

Fun- 1.77 96 CB 5.42 x 10-6
24 Half- 1.70 69 HZL 2.88 x 10-4

Quarter- 1.59-1.60 49 CB 2.64 x 10-5

Fun- 1.84 145 CB 2.42 x 10-6
36 Half- 1.76 103 HZL 1.28 x 10-4

Quarter- 1.71 73 CB 1.06 x 1()-5

Fun- 1.89 203 CB 1.25 x 10-6
50 Half- 1.84 141 HZL 6.64 x 10-4

Quarter- 1.78 98 CB 5.28 x 10-6

Fun- 1.92 281 CB 6.24 x 10-7

70 Half- 1.89 205 HZL 3.38 x 10.5

Quarter- 1.84 136 CB 2.63 x 10-6

Fun- 1.94 380 CB 3.15 x 10-7

100 Half- 1.92 289 HZL 1.66 x 10-5

Quarter- 1.89 203 CB 1.27 x 10-6

iterative evaluation is stopped; otherwise repeat the iteration cycle.

PERFORMANCE EVALUATION

In order to confirm that the parallel quarter-sweep point iterative algorithm is
better than the other parallel algorithms, the following experiments were
carried out on the SMP parallel computer, the Sequent S27. All algorithms were
applied to the following test problem,

(17)

subject to the Dirichlet conditions and satisfying the exact solution u(x,y) = eXY
for (X,y)EaQh.

Throughout the experiments, the local convergence test was the maximum
absolute error with the error tolerance E = 10-1°. The experiments were
performed on various sizes of n such as 24, 36, 50, 70, 100 and number of
processors ranging from 1 to 5. For each n, the experimental value of w. was
obtained to within ±O.Ol by solving the problem for a range of values of w. and
choosing those which give the minimum number of iterations. Table 1 lists the
optimum value of w. number of iterations, strategies and maximum error for
all the parallel algorithms and the timing results and speedup are presented in
Table 2. For n = 100, the graphs of execution time, speedup and efficiency

170 PertanikaJ. Sci. & Techno!. Vo!. 8 No.2. 2000

An Efficient Parallel Quarter-sweep Point Iterative Algorithm

TABLE 2
Execution time and speedup for all the parallel algorithms

No. Full- Half- Quarter-
h- I

processors Time Speedup Time Speedup Time Speedup

1 4.8519 1.0000 1.8878 1.0000 0.6441 1.0000
2 2.6289 1.8456 1.0521 1.7943 0.3739 1.7225

24 3 1.8714 2.5926 0.8021 2.3533 0.2828 2.2770
4 1.4975 3.2400 0.6100 3.0947 0.2211 2.9131
5 1.3322 3.6420 0.5623 3.3572 0.2002 3.2164

1 16.6563 1.0000 6.3132 1.0000 2.1570 1.0000
2 8.8748 1.8768 3.3785 1.8686 1.1685 1.8465

36 3 6.4233 2.5931 2.5405 2.4850 0.8974 2.4036
4 5.0936 3.2681 2.0121 3.1376 0.6905 3.1237
5 4.2167 3.9500 1.6748 3.7695 0.5970 3.6125

1 45.5404 1.0000 16.6219 1.0000 5.5789 1.0000
2 24.0318 1.8950 8.8426 1.8797 3.0786 1.8121

50 3 16.8674 2.6999 6.4321 2.5842 2.2586 2.4700
4 13.6692 3.3316 5.0450 3.2947 1.7155 3.2520
5 10.9319 4.1658 4.1124 4.0418 1.4101 3.9562

1 125.8978 1.0000 48.3252 1.0000 15.3360 1.0000
2 67.8831 1.9000 25.5685 1.8900 8.3356 1.8398

70 3 46.2469 2.7889 17.7666 2.7200 5.8891 2.6041
4 34.6940 3.6288 13.7592 3.5122 4.5747 3.3523
5 28.6456 4.3950 11.4713 4.2127 3.8009 4.0348

1 353.5294 1.0000 146.2460 1.0000 48.1291 1.0000
2 179.8033 1.9662 76.9520 1.9004 25.3738 1.8968

100 3 127.3153 2.7768 52.8097 2.7693 17.6200 2.7315
4 96.1932 3.6752 41.4294 3.5300 13.7472 3.5010
5 79.1159 4.4685 33.8454 4.3210 11.5533 4.1658

..
400 400

Full-sweep
350 *, 350

Half-sweep
'·····0· .. ···

Vl300 Quarter-sweep 300
'tJc: --&-.

§ 250 250
.!!?-

'"§ 200 200

c:
'.........

".
2150 0. " . 150
:J~- ...
:rl -
~100 _....... 100

·0

50 ····0 50

" - - - - - - - -~ - - - - - - - -£1- - - - _.~.~.~:.~~.~.~.~.~.~.~c.
0

No. of processors

Fig 4. Execution time versus number oj processors Jor n=100

PertanikaJ. Sci. & Techno\. Vol. 8 No.2, 2000 171

2

Full-sweep
........ -

Half-sweep
...... -0.•...•

Quarter-sweep
--8---

Ideal
._. -A-.-

Othman M. and Abdullah A. R.

" .. .1\ 5

OLL------'------..I- ..L- ----l...JO

No. of processors

Fig 5. Speedup versus number of processors for n=100

versus number of processors are shown in Figures 4, 5 and 6, respectively.

The temporal performance parameter is usually used to compare the
performance of different algorithms for solving the similar problem. It is
defined as the inverse of the execution time where the unit is work done per
second. The algorithm with the highest performance executes in the least time
and therefore is the better algorithm. The graph of temporal performance
versus number of processors of all the parallel algorithms is plotted and shown
in Figure 7.

CONCLUSION

In Table 2, the timing results obtained have shown that the parallel quarter-

1.1 ,---------------------------,1.1

0.8

172

0.7

g 0.6

'";g 0.5

W
0.4

0.3

0.2

No. of processors

Fig 6. Efficiency versus number of processors for n=100

PertanikaJ. Sci. & Techno!. Vo!. 8 No.2. 2000

0.7

0.6

0.5

0.4

0.3

0.2

0.1

An Efficient Parallel Quarter-sweep Point Iterative Algorithm

0.1 ,------------------------,0.1

0.09 - Full-sweep
.-.~ ...

Half-sweep
O.OB - 0·

Q>g 0.07 _ QU~'.!.8~s~e.ep

c
:2 0.06a
~ 0.05
Q>

00.04

l1l
Q> 0.03
>.s

0.02

--
",-

.....(>

...,-

0···· .

0.09

O.OB

0.01

- 0.06

0.05

0.04

.0- 0.03

0.02

0.01 ~::::::.:::::::~~~:~~~~~-•••• _. __ •••••• _••••••••• - - •••• - ••• - •• _..... •• 0.01

o 0
, 2

No. of processors

Fig 7. Temporal perJormance versus number oj processors Jor n=100

sweep point iterative algorithm which uses the CB strategy is superior than the
parallel full- and half-sweep point iterative algorithms for any number of
processors and as n gets larger. Figure 4 shows the graph of the execution time
versus number of processors for case n = 100. This is due to the lower total
computational operations in the algorithm since approximately a quarter of the
total points are involved in the iteration. The superiority of the algorithm is also
indicated by the highest value of the temporal performance and least number
of iteration of the algorithm as shown in Figure 7 and Table 1, respectively.

However, the speedup and efficiency of the parallel quarter-sweep algorithm
is slightly less than the other two algorithms and it can be improved by
increasing the size of points n in the Qh, see Figures 5 and 6. In conclusion, the
parallel quarter-sweep point iterative algorithm with the CB strategy performs
drastic improvement in execution time and it has proved to be an efficient
parallel Poisson algorithm among the three algorithms on the SMP parallel
computer.

REFERENCES

Au, N. M. and A. R. ABDULlAH. 1997. New Parallel Point Iterative Solutions for the
Diffusion Convection Equation, in Froc. oj the lASTED Intern. Con! on Parallel and
Distributed Computing and Networks, ed. M. H. Hamza, pp. 136-139, IASTED-Acta
Press, Zurich.

ABDULlAH, A. R. 1991. The four points explicit decoupled group (EDG) method: a fast
Poisson solver. Intern. Journal oj Computers and Mathematics 38 : 61-70.

BARLOW, R. H and D.]. EVANS. 1982. Parallel algorithms for the iterative solution to linear
system. Computer Journal 25 (1): 56-60.

EVANS, D.]. 1984. Parallel S.O.R. iterative methods. Parallel Computing 1: 3-18.

PertanikaJ. Sci. & Techno\. Vol. 8 No.2, 2000 173

Othman M. and Abdullah A. R.

OTHMAN, M. AND A. R. ABDULlAH. 1998. A new point iterative method for solving Poisson
equation on MIMD computer system. Sains Malaysiana 27 (1&2): (in press).

YOUSIF, W. S. and D. J. EVANS. 1995. Explicit de-eoupled group iterative methods and their
parallel implementations. Parallel Algorithms and Applications 7: 53-71.

174 PertanikaJ. Sci. & Techno!. Vo!. 8 No.2, 2000

