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ABSTRAK

Suatu kajian simulasi telah dijalankan untuk memeriksa keteguhan penganggar
Kuasadua Terkecil Biasa Dilinearkan (LOLS), penganggar Kuasadua Terkecil
Teritlak Terjelma (TGLS) , penganggar Kuasadua Terkecil Berpemberat Terjelma
(LRLS) dan penganggar Kuasadua Terkecil Berpemberat Terjelma Dilinearkan
(TLRLS). Kaedah TLRLS adalah pengubahsuaian kaedah Kuasadua Terkecil
Berpemberat (RLS) berasaskan kepada kaedah Median Kuasadua Terkecil
(LMS). Kajian berangka menunjukkan bahawa penganggar LOLS, TGLS dan
LRLS tidak cukup teguh apabila peratusan titik terpencil di dalam data
meningkat. Ini bermakna ketiga-tiga penganggar tersebut tidak mempunyai
titik musnah yang tinggi. Keputusan kajian menunjukkan bahawa Kaedah
TLRLS mempunyai titik musnah yang tinggi berbanding dengan tiga kaedah
yang lain.

ABSTRACT

A simulation study is used to examine the robustness of some estimators on a
linearized nonlinear regression model with heteroscedastic errors, namely the
Linearized Ordinary Least Squares (LOLS), Transformed Generalized Least
Squares (TGLS) , Linearized Reweighted Least Squares (LRLS) and Transformed
Linearized Reweighted Least Squares (TLRLS). The latter is a modification of
Reweighted Least Squares (RLS) based on Least Median of Squares (LMS).
The empirical evidence shows that the first three estimators are not ufficiently
robust when the percentage of outliers in the data increases. That is, they do
not have a high breakdown point. On the other hand, the modified estimator
(TLRLS) has a higher breakdown point than the other three estimators.

Keywords: breakdown point, outliers, generalized least squares,
heteroscedasticity, least median of squares, linearized model, log­
normal distribution, reweighted least squares

INTRODUCTION

The difficulty in computations involving a complex nonlinear structure can be
solved by some transformation of the data so that it appears to follow a new
model which is less complicated. A common type of transformation is to
linearize the nonlinear model by means of log transformation. However, it is
necessary to be aware of the consequences of using log transformation of a
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nonlinear model with additive error terms. Such a transformation may alter the
error structure unless the error terms are multiplicative. While transformation
may solve the computational problem, it may produce another problem in
terms of violation of error structure. Thus, a clear advantage of linearization as
far as the properties of the estimators are concerned is not gained.

Consider the general nonlinear model with multiplicative error terms

Yi = f(X i , f3)E i (1.1 )

where [3T = ([31' [32 , , [3p) is the vector of parameters to be estimated. The
regressors Xi i = 1,2 , , are, in general, p dimensional vectors whose values are
assumed known, and the errors Ej = 1,2, ... ,0 are i.i.d log-normal random
variables, i.e. E - A(O, (J2Q) where A denotes a log-normal distribution and n
is a n x n scale matrix.

In many applications, errors which are heteroscedastic, multiplicative and
not normally distributed may be encountered. Often the nature of
heteroscedasticitys not known. Heteroscedasticity is frequently modelled as a
function of covariates, mean response or other functional forms. By erroneuosly
assuming that the model has an error structure which is additive,_ normally
distributed, and n is an identity matrix, the least square estimator [3 is found
by minimizing the sum of squares

(1.2)

Using the Gauss-Newton Method (see Ratkowsky 1983), fi are obtained by

an iterative process. At the (k + l)th iteration, we have

where J (~) is the n x p Jacobian matrix, i.e.

df(X
"

[3) df(X ,,[3) df(X I, [3)
J[31 J[32 L J[3p

J([3') = M [3 [3*

df(X n , [3) df(X
Il
,[3) df(X n ,[3)

J[31 J[32 L J[3p

Starting with initial values for [3 at k = 0, the process continues until
convergence, wh~ch occurs when l[3k+1 - [3(k>1 is smaller than some preselected
small quantity. [3 obtained from (1.3) is not asymptotically optimal when it
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violates the assumption of homoscedasticity. Moreover, equation (1.2) is not
valid when the error structure is really multiplicative instead of addtive in
nature. Consequently, a 'bad' estimator is obtained as a result of employing an
incorrect formula on the erroneous a sumptions.

There are, however several nonlinear models which can be made linear by
some appropriate transformation. It should be noted, however, that the
linearization of the non-linear models may require the transformed error terms
to be independent and normally distributed with mean °and constant variance,
(j2.

Model (1.1) can be linearized by taking a natural logarithm that is,

Ln Y = Ln f(X,P) + Ln c

or it can be written as

Y = X'po + c'

where

Y = Ln Y, X'po = Ln f(X,P), c* = Ln c)

(1.4)

Ln c is normally distributed, i.e. Ln c. - N (O,(j2Q) since c. in model (1.1)
follows a'log-normal distribution, i.e. c

j
- A(O,(j2Q). The transfo~mationenables

the use of the standard regression method. It is very important to note that
when transformed models are employed, the estimators obtained by least
squares have the least squares properties with respect to the transformed
observations, not the original ones, However, the ordinary Least Square Estimator
of the linearized model (LOLS) in (1.4),

(1.5)

is not an optimal estimator because Q is not an identity matrix. Let Q = ppT
where P is an nxn diagonal matrix, i.e.

P =diag {l/~p(x)), 1/~p(x2)' L , l/~p(xn),}

The above problem of heteroscedasticity can be removed by means of a
suitable transformation.

The transformed model is defined as

to give
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where

This leads to

(1.7)

which is the best linear unbiased estimator with respect to the transformed
model (1.4), and is called the generalized least square estimator on the
transformed variables (TGLS).

However, the drawback of the LOLS and the TGLS estimator is that they
may be affected by outliers, which are observations which significantly deviating
from the underlying model governing the bulk of the data. Hampel (1971)
pointed out that even one single outlier can have an arbitrarily large effect on
the estimates. In this connection, he introduced the so-called breakdown point,
c' as the smallest percentage of contaminated data that can cause an estimator
to take an arbitrarily large values. The robustness of each estimator depends on
the value of c'. An estimator becomes more robust as the value of c' increases.
A better approach is to consider a robust method which is much less influenced
by the outliers.

Several works on robust estimation have been proposed in the literature.
Among them are Barrodale and Roberts (1973) and Armstrong and Kung
(1978) who introduce L1-norm estimators. Huber (1973) proposed M-estimation
and this was modified further by Krasker and Welsch (1982) who introduced
bounded-influence regression estimator. one of these estimators achieves a
breakdown point c' = 30% in the case of simple regression. Rousseeuw (1984)
introduced the most robust regression estimator with the highest possible
breakdown point, i.e. c' = 50%. This method is known as the Reweighted Least
Squares (RLS) based on the Least Median of Squares (LMS).

There have been numerous studies concerning the estimation of a linear
model with heteroscedastic errors in the literature (Box and Hill 1974; Carroll
and Ruppert 1982; Cohen et al1993). However, none of the studies has taken
into consideration the estimation of a high breakdown linear regression with
heteroscedastic errors.

The focus of this study was to investigate the effect of outliers on the
estimates of the linearized regression model when the errors are heteroscedastic.
Consider a nonlinear model with multiplicative error terms, log-normally
distributed and heteroscedastic; i.e,

i.e. cj - ~(0,X2~. The mean and the variance of c
j

are E(cj) =
V(Cj) =e

2
'; - e Xj respectively (Johnson and Kotz 1970).

(1.8)

and
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By taking logarithms, model (1.8) can be written as a linear model:

Ln Yi = Ln ~o + Xi Ln ~l + Ln C j

where

(1.9)

The linearized model (1.9) is an additive model with hetercoscedastic
errors. It is very important to note that when heteroscedasticity prevails but
other conditions of model (1.9) are satisfied, the estimators obtained by
ordinary least squares methods are still unbiased, but they are no longer
minimum variance unbiased estimators. The variance of the error terms is
proportional to x2

,V(t)=kx~, k~l. For simplicity, we take k = 1. The appropriate
transformations to obtain minimum variance unbiased estimators for model
(1.9) are

Ln y x· 1y'
X x

Model (1.9) then becomes

Ln Yi Ln /30 + In /31 + Ln ci
(1.10)

Xi Xi Xi

A slight modification of the RLS method based on LMS is proposed. The
values of the variables X and yare then substituted with the values of the
transformed linearized variables l/x and L ny, respectively.

x
The modified method, known as the Transformed Linearized Reweighted

Least Squares (TLRLS) based on the LMS is performed by implementing the
RLS method to the transformed linearized variables. We would expect the
modified method to be more robust than the Linearized Ordinary Least
Squares (LOLS), the Transformed Generalized Least Squares (TGLS) and the
Linearized Reweighted Least Squares (LRLS) procedures would maintain a
breakdown point as high as 50%.

ROBUST REGRESSION ESTIMATOR

The Least Median of Squares (LMS) estimator (Rousseeuw 1984; Rousseeuw
and Leroy 1987) is defined as the value that minimizes

where

median r.2
I

T/3'r i = Yi - X , 1,2, .....n

(2.1)
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for model (1.4).

This estimator is very robust with respect to outliers in y as well as outliers
in x and also has the highest possible breakdown point, e' 50%.

The estimated variance, 0- is given by

(j' =

where

(2.2)

w ={l
i °

if h/sl ::; 2.5

otherwise
(2.3)

s = 1.4826 {I + 5/(n-p)}~m~dri2
I

In matrix notation, w; may be written as n x n diagonal matrix:

W = diag 1l,0,1,1, ... ,0, ..... 0,1}

t

(2.4)

the j'h outlier in the data set

Unfortunately, the LMS performs poorly (inefficient) when the errors are
actually normally distributed. In order to impove the LMS estimator, Rousseeuw
and Leroy (1987) introduced a method called Reweighted Least Squares (RLS)
regression based on LMS, which is given by:

minimize L w.r.2
• I I

f3

(2.5)

The weights Wi are determined from the LMS solutions (2.1), but with the
estimated variance of (2.2) instead of (2.4). From (1.4), the Linearized
Reweighted Least Square (LRLS) model can be written as: WY = WX' + We'.

Therefore, the LRLS estimator is given by

fi = (X'T WX') X'T WV' (2.6)

From (1.6), the Transformed Linearized Reweighted Least Squares (TLRLS)
model then becomes
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(2.7)



Robust Estimation of a Linearized Nonlinear Regression Model with Heteroscedastic Errors

which gives

y*** X *** f3* + E ***

with

The TLRLS estimator is now defined as

(2.8)

Since the same method is used to estimate fi, the TLRLS estimates are
expected to have the same breakdown point, i.e. c' = 50%, as possessed by the
RLS estimates in the case of linear model with homoscedastic errors.

SIMULATION STUDY

To illustrate the breakdown properties of the estimator in (1.5), (2.6), (1.7),
(2.8), a simulation study was carried out as follows: 100 'good' observations
were generated according to nonlinear relation Yi = (2)(1.5)'i c; where Xi is
uniformly distributed on [1,7]. ci is drawn from log-normal distribution, i.e.
ci - A(O,kxi) where k = 1 . The above relation was then linearized to produce
a linear relation:

Ln y. = Ln 2 + Ln(1.5) x.+ Ln c. where Ln c; - N(0,kx2
,.) where k = 1. The, "

true values of ~o and ~I are Ln 2 '" 0.693 and Ln(1.5) '" 0.405, respectively. The
procedures (1.5), (2.6), (1.7), (2.8) were then applied to these data. The
results are as follows:

fiO(LOLS) = 1.352, f30(LRLS) = 1.388, fiO(TGLS) = 0.855,

fiO(TLRLS) = 0.614, fil (LOLS) 0.158, fil (LRLS) = 0.023,

fil(TGLS) = 0.297, f31 (TLRLS) 0.431.

Since the data were uncontaminated, the above estimates were quite close
to the true values, especially the TLRLS and the TGLS estimates.

Then contamination of the data was commenced. At each step, one 'good'
observation was deleted and replaced with a bad data point. The contaminated
data points were generated according to the non-linear relation,
Yi = (20)(1.5)X; c; where Xi is uniformly distributed on [0,1]. c

i
is drawn from

A(20, kxf) where k = 1. The above relation was also linearized to produce
Ln y. = Ln 20 + xLn(1.5) + Lnc. where Ln Ln c; - N(20,kxf).

, , I
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The above process was repeated until only 50 'good' observations remained.
Table 1 presents the values of iJo and iJl for the four methods, when good
observations are replaced by certain percentages of outliers. OT noted in Table
1 indicates outlier.

The breakdown plots that illustrate the values of iJo and iJl as a function
of the percentage of outliers are shown in Fig. 1, 2. These figures show that the

TABLE 1
The values of iJ;and iJ~ for n = 100

/30 /31
Method Method

%OT LOLS LRLS TGLS TLRLS LOLS LRLS TGLS TLRLS

0 1.352 1.388 0.855 0.614 0.158 0.023 0.297 0.431
10 9.864 0.508 23.957 0.463 -1.515 0.517 -6.620 0.532
20 14.569 0.506 23.114 0.398 -2.396 0.538 -5.555 0.569
30 17.928 19.460 23.085 0.464 -3.032 -3.299 -4.717 0.607
40 20.136 23.930 23.081 0.250 -3.558 -3.914 -3.960 0.654
45 21.834 24.678 23.082 0.108 -3.695 -4.121 -3.713 0.711
50 21.691 24.169 23.057 23.675 -3.879 -2.750 -3.300 -3.373

estimated values iJo and /31' which are based on the LOLS and TGLS were
immediately affectd by the outliers. As can be expected, when there is no
outlier, the TGLS estimator performs better than the LOLS and the LRLS
estimators. But as the percentage of outliers increases, the TGLS estimates
move away from the true values drastically, followed by the LOLS and the LRLS
estimates. Furthermore, the increase in the percentage of ou?iers from 0% up
to 45% changed not only in the values but also the signs of /31 of TGLS, LOLS
and LRLS, i.e. from positive to negative values. The results also point out that
the LRLS estimates can tolerate slightly over 20% of outliers. The values of the
TLRLS estimates seem to be consistent, before breaking down at 50% of
outliers. This implies that The TGLS and the LOLS estimates break down first,
followed by the LRLS and TLRLS estimates.

The breakdown properties of these estimates were investigated further by
considering three samples of size 20, 50 and 100 observations. Simulation
studies were carried out in the manner described earlier. Tables 2, 3 and 4 show
the summary statistics, such as bias, standard error (SE) and root mean square
error (RMSE) of the estimators. These results are very useful in assessing the
breakdown properties of the estimates.

These tables show that the TLRLS estimates are almost as good as the
LOLS estimates in the normal error situation. As was to be expected, the TGLS
estimates give the best results followed by the TLRLS, LOLS and LRLS
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TABLE 2
Bias, SE, RMSE of {3~and f3, for n = 20

Outlier {3~ {3~
% Method Bias SE RMSE Bias SE RMSE

LOLS 0.083 1.964 1.966 -0.014 0.615 0.615
LRLS 0.159 2.136 2.142 -0.051 0.816 0.818

0 TGLS 0.100 1.367 1.370 -0.021 0.480 0.480
TLRLS 0.109 2.104 2.106 -0.034 0.645 0.646

LOLS 9.338 2.143 9.580 -1.925 0.626 2.024
LRLS 0.257 2.957 2.968 -0.041 0.886 0.881

10 TGLS 22.858 1.517 22.908 -6.894 1.020 6.969
TLRLS 0.289 3.167 3.180 -0.051 0.801 0.801

LOLS 14.246 2.008 14.387 -2.965 0.637 3.032
LRLS 2.140 6.550 6.891 -0.468 1.527 1.597

20 TGLS 23.644 1.003 23.665 -6.884 1.094 6.971
TLRLS 0.635 4.180 4.227 -0.136 0.957 0.967

LOLS 17.339 1.811 17.434 -3.622 0.655 3.681
LRLS 10.711 11.488 15.706 -2.320 2.656 3.526

30 TGLS 23.482 0.984 23.503 -6.358 1.198 6.470
TLRLS 2.018 6.963 7.249 -0.416 1.509 1.565

LOLS 19.420 1.555 19.482 -4.078 0.698 4.137
LRLS 22.265 5.816 23.012 -4.653 1.795 4.987

40 TGLS 23.283 0.926 23.301 -5.709 1.227 5.839
TLRLS 6.828 10.965 12.917 -1.355 2.244 2.621

LOLS 20.959 1.330 21.001 -4.425 0.765 4.490
LRLS 24.008 0.736 24.020 -3.693 1.390 3.946

50 TGLS 23.094 0.842 23.109 -4.961 1.262 5.119
TLRLS 24.180 1.477 24.225 -4.551 1.556 4.809

estimates, when no contamination occurs in the model. The LOLS seems to be
better than the LRLS estimator in this situation. It appears that the bias is
almost negligible and the variance makes up most of the MSE.

Nevertheless, as the percentage of outliers in the data becomes larger, the
RMSE of the TGLS and the LOLS estimates increase significantly with the
biases making up most of the &\I1SE and the variances are rather small. The
TGLS estimates emerge to be conspicuously more efficient in the problem of
heteroscedasticity wi.th no contamination in the model. The LRLS estimator
can be considered a good alternative for the case with slightly above 20%

outliers.
On the other hand, the RMSE of the TLRLS estimates is consistently small

as the percentage of outliers becomes larger. Nonetheless, its values changed
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TABLE 3
Bias, SE, RMSE of /3~and /3~ for n = 50

Outlier /3~ /3~
% Method Bias SE RMSE Bias SE RMSE

LOLS 0.073 1.222 1.224 -0.008 0.386 0.386
LRLS 0.126 1.375 1.381 -0.031 0.5430 0.543

0 TGLS 0.015 0.783 0.783 0.008 0.285 0.285
TLRLS 0.032 0.978 0.978 0.005 0.339 0.339

LOLS 9.164 1.275 9.253 -1.887 0.382 1.926
LRLS 0.057 1.666 1.667 0.005 0.559 0.559

10 TGLS 22.913 0.578 22.921 -6.896 0.653 6.927
TLRLS 0.041 1.055 1.056 0.000 0.357 0.357

LOLS 14.076 1.215 14.129 -2.907 0.372 2.930
LRLS 0.667 3.852 3.909 -0.127 0.905 0.914

20 TGLS 23.064 0.628 23.073 -6.480 0.766 6.626
TLRLS 0.127 1.564 1.5669 -0.017 0.444 0.444

LOLS 17.130 1.106 17.166 -3.543 0.385 3.564
LRLS 9.210 10.914 14.281 -1.892 2.321 2.995

30 TGLS 22.896 0.579 22.903 -5.828 0.817 5.885
TLRLS 0.423 3.165 3.193 -0.076 0.706 0.710

LOLS 19.241 0.954 19.265 -3.989 0.389 4.008
LRLS 23.713 2.050 23.801 -4.727 0.969 4.825

40 TGLS 22.738 0.457 22.743 -5.090 0.774 5.149
TLRLS 2.416 7.278 7.669 -0.464 1.442 1.515

LOLS 20.805 0.835 20.821 -4.320 0.432 4.342
LRLS 23.810 0.534 23.816 -3.210 1.103 3.395

50 TGLS 22.618 0.349 22.621 -4.307 0.738 4.370
TLRLS 23.949 1.153 23.976 -4.212 1.210 4.383

dramatically at 50% of outliers. The results seem to be consistent in all 500 trials
and for each sample, size n = 20, 50, 100. The RMSE of the TLRLS estimates
are relatively smaller than the other three estimates. Summarizing the findings
from Tables 2, 3 and 4, it can be concluded that the TGLS and the LOLS
estimates break down first and are then followed by the LRLS and TLRLS
estimates. Thus, it can be concluded that the TLRLS estimates are the best
method for handling the problem of outliers in the linearized model when the
error terms are heteroscedastic.
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TABLE 4
Bias, SE, RMSE of ~~and fi~ for n = 100

Outlier fi~ fi~
% Method Bias SE RMSE Bias SE RMSE

LOLS 0.027 0.822 0.823 -0.002 0.264 0.264
LRLS 0.009 1.009 1.009 0.005 0.411 0.411

0 TGLS 0.009 0.506 0.506 0.005 0.193 1.193
TLRLS 0.040 0.613 0.614 -0.004 0.227 0.227

LOLS 9.069 0.829 9.107 -1.863 0.265 1.882
LRLS -0.026 0.949 0.949 0.021 0.373 0.374

10 TGLS 22.836 0.368 22.839 -6.838 0.432 6.852
TLRLS -0.002 0.576 0.576 0.012 0.222 0.223

LOLS 13.971 0.794 13.994 -2.874 0.269 2.887
LRLS 0.045 1.306 1.307 0.000 0.413 0.413

20 TGLS 22.7Ql 0.477 22.796 -6.265 0.512 6.286
TLRLS 0.009 0.595 0.5959 0.010 0.230 0.230

LOLS 17.059 0.720 17.074 -3.508 0.273 3.518
LRLS 7.639 10.244 12.779 -1.569 2.146 2.658

30 TGLS 22.632 0.359 22.634 -5.533 0.537 5.559
TLRLS 0.026 0.624 0.624 0.010 0.239 0.239

LOLS 19.180 0.618 19.190 -3.941 0.281 3.951
LRLS 23.787 0.612 23.795 -4.646 0.608 4.686

40 TGLS 22.551 0.275 22.553 -4.805 0.515 4.833
TLRLS 0.405 3.179 3.205 -0.973 0.675 0.679

LOLS 20.720 0.530 20.727 -4.246 0.304 4.257
LRLS 23.643 0.478 23.648 -2.853 1.014 3.028

50 TGLS 22.489 0.210 22.490 -4.055 0.083 4.084
TLRLS 23.787 0.991 23.808 -4.071 1.157 4.232

CONCLUSION

The TGLS estimator of the linearized model is a better choice than the other
three estimators in eliminating the problem of heteroscedasticity. Nevertheless,
its performance was inferior to LOLS, LRLS and TLRLS estimators when
contamination occurred in the data. The LRLS estimator has a breakdown
point slightly over 20% with the presence of outliers. It cannot provide a robust
alternative to the TGLS and LOLS since it is not sufficiently robust when the
percentage of outliers increases. The simulation studies clearly shows that the
TLRLS estimator is definitely the best because it is able to withstand a large
amount of outliers and has a highest breakdown point (up to 50% of outliers).
Hence, it should provide a robust alternative to the well-known TGLS estimators.
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