

UNIVERSITI PUTRA MALAYSIA

MICROSTRUCTURE AND ELECTRICAL AND OPTICAL PROPERTIES OF ZnO BASED VARISTOR CERAMICS WITH SMALL - AMOUNT OF MnO2 AND Co3O4 AS DOPANT

NOORFAUZANA BINTI ADNIN

FS 2012 17

MICROSTRUCTURE AND ELECTRICAL AND OPTICAL PROPERTIES OF ZnO BASED VARISTOR CERAMICS WITH SMALL - AMOUNT OF MnO₂ AND Co₃O₄ AS DOPANT

Thesis Submitted to the School of Graduate Studies Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Master of Science

January 2012

DEDICATION

To my beloved family, supervisor and all my dearest friends.

Thanks for their guidance, supports, understanding, caring, love and encouragements.

May ALLAH bless us always.

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

MICROSTRUCTURE AND ELECTRICAL AND OPTICAL PROPERTIES OF ZnO BASED VARISTOR CERAMICS WITH SMALL - AMOUNT OF MnO₂ AND Co₃O₄ AS DOPANT

By

NOORFAUZANA BINTI ADNIN

January 2012

Chairman

: Professor Azmi Zakaria, PhD

Faculty

: Science

Various stresses such as high electric fields, high temperature and aggressive ambient can inflict serious damages on machinery and other equipments and may degrade the performances of ZnO varistor devices. To develop a high performance of ZnO varistor ceramics, the influences of dopant are very crucial to be understood since dopants are responsible for the formation of varistor behavior. Therefore, small amount of MnO_2 and Co_3O_4 as dopant is added to ZnO system respectively to improve the varistor properties. Although there were numerous studies on the effect of dopant on ZnO varistor, the exact roles of "small amount" dopant in ZnO varistor and how it can improve the nonlinear Current - Voltage (*I-V*) characteristics have not yet been clarified.

In this study, the microstructure, electrical and optical properties of the ZnO - $xMnO_2$ and ZnO - xCo_3O_4 systems have been investigated for small amount of x ranging from 0.011 - 0.026 mol % at various sintering temperatures from 1180 - 1300 °C for the sintering time of 1 and 2 hours. XRD analysis shows that the main

phase was ZnO with ZnMnO₃, ZnMnO₇ and Co_3O_4 as the secondary phases developed in the material systems. The maximum density have been achieved up to about 98% of theoretical density at 1300 °C sintering temperature at 0.011 mol % doping level of Co_3O_4 and the relative density in general, has the value above 85%. The maximum grain size was found to be 14 μ m at the highest sintering temperature which is at 1300 °C at 0.021 mol % of Co_3O_4 doping level. It was also found that MnO₂ is a grain enhancer and promotes the grain growth of the ZnO samples. SEM and EDAX results verify that Mn and Co ions are distributed in the grain interior as well as in the grain boundaries. The value of nonlinear coefficient α , is found to increase with the amount of MnO₂ up to 0.016 mol% doping level, while slightly change with the amount for Co_3O_4 mol%. Also, the value of nonlinear coefficient increases with the increase of sintering temperature and time for all ZnO system. An optimum sintering temperature of 1300 °C at 2 hour sintering time for ZnO + 0.016%MnO₂ gave the best electrical properties, with the non-linear coefficient value α , attaining a highest value of 9.11 in which represent fast response to transient voltage, thus give high protective function of ZnO varistor. The band gap energy E_g , decreases with the increase of Co_3O_4 and MnO_2 doping level and also sintering temperature respectively. For both dopants, the maximum decrease in the band gap occur at 0.026 mol % doping level at 1300 °C for 1 hour sintering time with the value of 2.65 and 2.46 respectively.

It is found that, the introduction of "small amount" MnO_2 and Co_3O_4 dopant influences the microstructure, electrical and optical properties of all ZnO systems. The electrical characteristics of all ZnO samples depend on their microstructure properties. For both dopant, the growth of interface states are responsible for the decrement of the energy band gap value. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains.

PENCIRIAN STRUKTUR – MIKRO DAN ELEKTRIK DAN OPTIK VARISTOR SERAMIK BERASASKAN ZnO DENGAN KUANTITI SEDIKIT MnO₂ DAN C0₃O₄ SEBAGAI BAHAN DOP

Oleh

NOORFAUZANA BINTI ADNIN

Januari 2012

Pengerusi

: Profesor Azmi Zakaria, PhD

Fakulti

: Sains

Pelbagai tekanan seperti medan elektrik dan suhu yang tinggi serta persekitaran yang agresif boleh mengakibatkan kerosakan serius pada mesin dan peralatan - peralatan lain dan merosotkan prestasi peranti ZnO varistor. Untuk meningkatkan prestasi varistor seramik ZnO, pengaruh dopan adalah sangat penting untuk difahami dimana dopan bertanggungjawab terhadap pembentukan perilaku varistor. Oleh itu, MnO₂ dan Co₃O₄ digunakan di dalam kuantiti yang sedikit sebagai bahan dop dimana setiap satu ditambah kepada sistem ZnO untuk meningkatkan sifat - sifat varistor. Walaupun terdapat banyak kajian mengenai kesan pendopan pada ZnO varistor, peranan sebenar bahan dop dalam "kuantiti sedikit" di dalam ZnO varistor dan bagaimana ia boleh meningkatkan sifat-sifat tak linear arus - voltan (*I-V*) masih belum dijelaskan secara terperinci.

Di dalam kajian ini, pencirian mikrostruktur, elektrik dan optik bagi sistem ZnO - $xMnO_2$ dan ZnO - xCo_3O_4 telah dijalankan bagi perubahan nilai x dari 0.011 -0.026 mol% pada pelbagai suhu pensinteran dari 1180 - 1300 °C dan dengan masa pensinteran selama 1 dan 2 jam. Analisis XRD menunjukkan bahawa fasa utama

adalah ZnO dengan ZnMnO₃, ZnMnO₇ dan Co₃O₄ sebagai fasa - fasa kedua yang terbentuk di dalam sistem bahan. Ketumpatan maksimum telah dicapai sehingga 98% dari ketumpatan teori pada suhu pensinteran 1300 °C pada tahap 0.011 mol% Co₃O₄ dan ketumpatan relatif secara umumnya mempunyai nilai di atas paras 85 %. Saiz butiran maksimum didapati adalah 14 µm pada suhu pensinteran yang tertinggi iaitu 1300 °C pada tahap 0.021 mol% Co₃O₄. Didapati bahawa MnO₂ adalah penggalak butiran dan menggalakkan pertumbuhan butiran sampel ZnO. Keputusan SEM dan EDAX menunjukkan bahawa ion Mn dan Co bertaburan di dalam butiran dan juga di sempadan butiran. Nilai pekali tak -linear, α didapati meningkat dengan peningkatan jumlah MnO₂ sehingga tahap 0.016 mol% manakala sedikit perubahan berlaku dengan peningkatan jumlah Co_3O_4 . Nilai pekali tak-linear juga meningkat dengan peningkatan suhu dan masa pensinteran bagi kesemua sistem ZnO. Suhu persinteran yang optimum pada 1300 °C bagi masa persinteran selama 2 jam, memberikan sifat elektrik yang terbaik dengan nilai pekali tak-linear, α mencapai nilai 9.11 yang mewakili tindakan pantas terhadap voltan fana, seterusnya melindungi ZnO varistor. Jurang jalur tenaga masing - masing menurun dengan peningkatan jumlah MnO₂ dan Co₃O₄ dan suhu persinteran. Bagi kedua - dua bahan dop, penurunan maksimum dalam jurang jalur berlaku pada tahap 0.026 mol% pada suhu pensinteran 1300 °C dan masa pensinteran selama 1 jam masing-masing dengan nilai 2.65 dan 2.46.

Didapati bahawa, bahan dop MnO_2 and Co_3O_4 di dalam kuantiti yang sedikit masing - masing mempengaruhi pencirian mikrostruktur, elektrik dan optik bagi kesemua sistem ZnO. Pencirian elektrik bagi kesemua sistem ZnO bergantung kepada pencirian struktur - mikro. Bagi kedua - dua bahan dop, pertumbuhan antara muka merupakan penyebab utama penurunan nilai jurang jalur tenaga.

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest praise to ALLAH S.W.T who has given me the strength, patience, faith, bless, determination and courage to complete this thesis within the time frame despite all the challenges. My most sincere gratitude and highest thanks goes to my project supervisor, Prof. Dr. Azmi Zakaria for his continuous supervision, invaluable suggestion, constructive critism and beneficial advice throughout this work. I would also like to acknowledge my co-supervisor, Assoc. Prof. Dr. Mansor Hashim for his valuable advice and guidance during this period of study.

Special thanks are also given to all staffs in the Department of Physics, Institute of Bioscience (IBS) and Institute of Advanced Technology (ITMA), Universiti Putra Malaysia for their assistance and cooperation throughout my study. Thanks also to GRF scholarship awarded by the Universiti Putra Malaysia during this period of study which enable me to complete this work. A deep acknowledgement to my laboratory members and all my beloved friends who have directly or indirectly contributed towards the success of this project. Thank you for making my study of Master of Science at UPM a memorable and enjoyable one. Last but not least, my sincere thanks to my family members especially to my beloved parents; Adnin bin Dahalan and Jemilah bt. Abdul Manap for their prayers, continuous moral support and encouragements in every aspects to my work. In truth, only Allah can reciprocate all the kindness. May Allah bless you. This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

BUJANG KIM HUAT, PhD Professor and Dean School of Graduate Studies Universiti Putra Malaysia

Date:

I certify that an Examination Committee has met on **18 January 2012** to conduct the final examination of Miss Noorfauzana binti Adnin for her Master of Science thesis entitled "Microstructure, Electrical and Optical Properties of ZnO Varistor Ceramics With Small - Amount MnO_2 and Co_3O_4 As Dopant" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Wan Mohamad Daud Wan Yusuff, Phd

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

Halimah Mohamed Kamari, Phd

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Khamirul Amin Matori, Phd

Senior Lecturer Faculty of Science Universiti Putra Malaysia (Internal Examiner)

Ibrahim Abu Talib, Phd

Professor Faculty of Science and Technology Universiti Kebangsaan Malaysia (External Examiner)

BUJANG KIM HUAT, Phd

Professor / Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or other institutions.

TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	Х
LIST OF TABLES	xiv
LIST OF FIGURES	XV
LIST OF ABBREVIATIONS	xix
LIST OF SYMBOLS	xxiii

CHAPTER

Page

1.	INTRODUCTION	
	1.1 Introduction	1
	1.2 Introduction of ZnO Varistor	1
	1.3 Introduction of Varistor	4
	1.4 Introduction of ZnO	7
	1.5 Introduction of Manganese Oxide	10
	1.6 Introduction of Cobalt Oxide	10
	1.7 Research Problems	12
	1.8 Scope of Research	13
	1.9 Objectives	14
2.	LITERATURE REVIEW	
	2.1 Introduction	15
	2.2 Reviews on ZnO Varistor	15
	2.3 Brief History of ZnO Varistor	21
	2.4 General Microstructure of ZnO Varistor	24
	2.5 Role of Additives	27
	2.5.1 Varistor Formers	28
	2.5.2 Varistor Enhancers	29
	2.5.3 Varistor Highlighters	29
3.	THEORY	
	3.1 Introduction	30
	3.2 Sintering	30
	3.3 Energy Band Gap	35
	3.4 Electrical Characteristics of ZnO Varistor	40
	3.5 Microstructure - Electrical Relationship of ZnO Varistor	42
	3.6 Nonlinear Current -Voltage (I-V) Characteristics	43
	3.6.1 Pre - Switch Region	44
	3.6.2 Switched Region	44
	3.6.3 Upturn Region	46

	3.7 Nonlinear Coefficient	47
	3.8 Depletion Layer	49
	3.9 Double Schottky Barrier Model	50
	3.10Interface States	52
4.	METHODOLOGY	
	4.1 Introduction	55
	4.2 Sample Description	55
	4.3 Choice of Additives	55
	4.4 Material System and Their Pre- sintering/Sintering Condition	56
	4.4.1 System 1 (ZnO +X MnO ₂)	56
	4.4.2 System II(ZnO +X Co_3O_4)	56
	4.5 Sample Preparation	57
	4.5.1 Raw Material	58
	4.5.2 Weighing	60
	4.5.3 Mixing and Drying	60
	4.5.4 Pre - Sintering	61
	4.5.5 Grinding, Addition of Binder (PVA) and Drying	61
	4.5.6 Crushing and Sieving	61
	4.5.7 Palletizing	61
	4.5.8 Sintering	62
	4.5.9 Sample Preparation for Optical Microscope, Scanning Electron Microscope (SEM) and Energy Dispersive X-Ray Analysis (EDAX)	63
	4.5.10 Sample Preparation for Current - Voltage (<i>I</i> -V) Characteristics	63
	4.4.10 Sample Preparation for UV-Visible Spectrometer	63
	4.6 Microstructural Analysis	64
	4.6.1 X-Ray Diffraction (XRD) Measurements	64
	4.6.2 Scanning Electron Microscope (SEM) Measurements	65
	4.6.3 Energy Dispersive X-Ray Analysis (EDAX) Measurements	66
	4.6.4 Average Relative Density Measurements	67
	4.6.5 Average Grain Size Measurements	69
	4.7 Nonlinear Electrical Characteristics Measurements	70
	4.8 Band Gap Energy Measurements	70
5.	RESULTS AND DISCUSSION	
	5.1 Introduction	72
	5.2 Morphological Studies of All Systems	72
	5.2.1 XRD Analysis	72
	5.2.2 EDAX Analysis	85
	5.2.3 SEM Analysis	89
	5.2.4 Average Relative Density Analysis	100
	5.2.5 Average Grain Size Analysis	110

5.3 Nonlinear Current - Voltage (<i>I-V</i>) Characteristics Studies of All	119
5 3 1 Nonlinear Coefficient (α) Against Different Sintering	119
Temperatures for $ZnO + xMnO_2$ and $ZnO + xCo_3O_4$	117
5.3.2 Nonlinear Coefficient (α) Against MnO ₂	123
Doping Level (mol %)	
5.3.3 Nonlinear Coefficient (α) Against Co ₃ O ₄	125
Doping Level (mol %)	
5.4 Optical Energy Band Gap Studies of All Samples	127
5.4. 1 Optical Energy Band Gap for $ZnO + MnO_2$	127
5.4.1.1 Energy Band Gap (E_g) for MnO ₂ for 1 hour	127
Sintering Time	
5.4.1.2 Energy Band Gap (E_g) for MnO ₂ for 2 hour	128
Sintering Time	
5.4.2 Energy Band Gap for $ZnO + Co_3O_4$	131
5.4.2.1 Energy Band Gap (E_g) for Co ₃ O ₄ for 1 hour	131
Sintering Time	
5.4.2.2 Energy Band Gap (E_g) for Co ₃ O ₄ for 2 hour	133
Sintering Time	
6 CONCLUSION	
6.1 Introduction	136
6.2 Conclusion	136
6.3 Recommendation For Future Research	139
REFERENCES	140
APPENDICES	145
BIODATA OF STUDENT	153
LIST OF PUBLICATIONS	154