Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst.

ABSTRACT

Biodiesel production by simultaneous esterification and transesterification of waste oil with methanol has been studied in a heterogeneous system using solid ferric hydrogen sulphate [Fe (HSO4)3] acid catalyst. The catalyst was prepared by displacement reaction followed by calcination at 400 °C for 3 h. The prepared catalyst was characterized using X-ray diffraction (XRD), Fourier transform infrared spectrometer (FT-IR), Brunner-Emmett-Teller surface area measurement (BET), thermal gravimetric analyzer (TGA) and temperature-programmed desorption of NH3 (TPD - NH3). Furthermore, the dependence of the conversion of mixed waste oil on the reactions variables such as the molar ratio of methanol/oil, the amount of catalysts used, reaction temperatures, reusability were also investigated. The catalyst was reused many times with slight loss in activity and the maximum yield of 94.5% was achieved at the optimized conditions of reaction temperature of 205 °C; stirring speed of 350 rpm, 1:15 molar ratio of oil to alcohol and 1% w/w catalyst loading.

Keyword: Biodiesel; Ferric hydrogen sulphate; Esterification; Transesterification; Mixed waste vegetable oil; Reusable