OPTIMIZATION OF LIPASE CATALYZED SYNTHESIS OF 3-O-BENZOYLBETULINIC ACID

By

YAMIN BIN YASIN

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

September 2004

Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Doctor of Philosophy

OPTIMIZATION OF LIPASE CATALYZED SYNTHESIS OF 3-O-BENZOYLBETULINIC ACID

By

YAMIN BIN YASIN

September 2004

Chairman: Professor Mahiran Basri, Ph.D.

Faculty: Science

Betulinic acid derivatives were successfully synthesized from reactions of betulinic acid with benzoyl chloride and acetic anhydride using enzymes as biocatalyst in an organic solvent system. Preliminary detection of the reaction products were conducted using thin layer chromatography (TLC) and subsequent quantitative studies were conducted using gas chromatography. Characterizations of the products were further conducted using (NMR), (MS) and (FTIR).

Initial screening of biological activities, revealed that the ester of the reaction of betulinic acid with benzoyl chloride showed a good cytotoxicity activity while no activity was detected for ester of reaction of betulinic acid and acetic anhydride. Thus, the reaction of betulinic acid and benzoyl chloride was chosen for further studies. Enzyme screening revealed that Novozyme was the most efficient biocatalyst for the reactions which produced a good yield of 3-O-benzoylbetulinic acid at 45.3%. The effects of various reaction parameters such as time of reaction, temperature, solvents

used, amount of enzyme, mole ratio of substrates and initial water activity (a_w) was studied to determine optimal condition of 3-O-benzoylbetulinic acid synthesis. The optimal conditions 3-O-benzoylbetulinic acid synthesis was obtained at incubation time of 12 h; temperature 50°C; mole ratio of betulinic acid/benzoyl chloride, 4.0; amount of lipase, 150 mg; organic solvent, chloroform and initial water activity (a_w), 0.12.

Response surface methodology (RSM) was then used to study the interactive effects of the reaction parameters. The best model for the reaction of 3-O-benzoylbetulinic acid was quadratic model. Generally, increasing both reaction temperature and amount of enzyme increased the percentage yields of products. However, a negative effect was detected at higher temperature due to denaturation of enzymes. Increasing reaction time and amount of enzyme improved the reactions, as did increasing reaction temperature and amount of enzyme. High amount of enzyme showed a slightly negative effect. In general, increasing the temperature and amount of enzyme resulted in negative effects of the response. Optimal conditions derived from the RSM differed slightly from those of the conventional "one-variable-at-a-time" approach due to the latter's inability to consider interactions among the parameters. The percentage yield for the optimize reaction conditions derived from RSM was 48.5%.

Betulinic acid and its acylated product were subjected to cytotoxicity, anti-viral, antimicrobe and anti-fungal assays in order to study the biological activities of this compound. The cytotoxicity evaluation of these compounds against cancer cell showed that 3-O-benzoylbetulinic acid from reaction of betulinic acid and benzoyl chloride (BCL) was the most active compound compared to betulinic acid (BA) and 3acetylbetulinic acid (BAA). BCL showed $IC_{50} < 5 \mu g/ml$ which indicated significant cytotoxicity activity against all cancer cells. However, no activities were detected against dengue viral and some microbes and fungi that were tested. Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

SINTESIS ASID BETULINIK ESTER MENGGUNAKAN ENZIM SEBAGAI MANGKIN

Oleh

YAMIN BIN YASIN

September 2004

Pengerusi: Profesor Mahiran Basri, P.h.D.

Fakulti: Sains

3-O-benzoil asid betulinik berjaya dihasilkan melalui tindakbalas antara asid betulinik dengan benzoil klorida dan asetik anhidrida menggunakan enzim sebagai mangkin dalam sistem pelarut organik. Pengesanan awal produk dijalankan dengan cara kromatografi lapisan nipis (TLC). Seterusnya, gas kromatografi digunakan dalam analisis kuantitatif. Pengkelasan produk seterusnya dijalankan dengan menggunakan NMR, MS dan FTIR.

Kajian awal keaktifan biologi sampel ke atas sel kanser menunjukkan produk yang dihasilkan melalui tindakbalas antara asid betulinik dengan benzoil klorida adalah aktif sementara produk yang dihasilkan melalui tindakbalas diantara asid betulinik dan asetik anhidrida adalah tidak aktif. Seterusnya, tindakbalas diantara asid betulinik dan benzoil klorida dipilih untuk kajian seterusnya. Antara beberapa enzim yang dikaji, lipase tersekat-gerak Novozyme didapati memberikan hasil yang terbaik dengan

penghasilan produk sebanyak 45.3%. Kesan pelbagai parameter tindakbalas seperti masa, suhu, pelarut organik, kuantiti lipase, pecahan mol reaktan dan aktiviti air awal (a_w) telah dikaji untuk menentukan keadaan tindakbalas maksimum bagi sintesis tersebut. Keadaan optimum telah dicapai pada masa 12 j; suhu 50°C; pelarut organik, kloroform; kuantiti lipase 150 mg; pecahan mol reaktan, 4.0 dan aktiviti air awal (a_w), 0.12.

Seterusnya, kaedah permukaan respon (RSM) digunakan untuk mengkaji interaksi antara kesan-kesan parameter atas tindakbalas tersebut. Model yang terbaik untuk tindakbalas asid betulinik adalah model kuadratik. Secara keseluruhanya, peningkatan suhu dan jumlah enzim akan meningkatkan peratusan hasil. Walau bagaimana pun kesan yang negatif akan dapat dilihat pada penggunaan suhu yang agak tinggi yang mungkin disebabkan oleh ketidakaktifan enzim pada suhu yang tinggi. Peningkatan masa tindakbalas dan jumlah enzim juga meningkatkan peratusan hasil. Pada jumlah enzim yang terlalu tinggi kesan negatif kepada peratusan hasil telah dilihat. Pada amnya, peningkatan suhu dan jumlah enzim pada tahap yang terlalu tinggi akan menghasilkan kesan negatif kepada respon. Keadaan optimum yang dirumuskan melalui kaedah RSM didapati berlainan daripada keadaan optima yang dihuraikan melalui kaedah lama "mengganti-parameter-satu-demi-satu". Perbezaan ini berpunca dari kegagalan kaedah lama untuk mempertimbangkan interaksi-interaksi antara parameter-parameter ujikaji. Peratusan hasil yang diperolehi pada keadaan optimum menggunakan kedah RSM adalah 48.5%.

Keaktifan biologi asid betulinik dan esternya diuji dengan kajian kesitotoksikan, antivirus, anti-mikrob dan anti-fungus. Kesitotoksikan sampel ini keatas sel kanser menunjukkan produk dari tindakbalas diantara asid betulinik dan benzoil klorida (BCL) adalah paling aktif jika dibandingkan dengan asid betulinik (BA) dan asid betulinik asetat (BAA). BCL menunjukkan $IC_{50} <5 \mu g/ml$ yang menerangkan kesesuaian untuk aktiviti kesitotoksikan ke atas sel kanser. Walau bagaimana pun, tiada keaktifan ke atas virus dengi dan sebahagian mikrob dan fungus yang diuji menggunakan sampel ini.

ACKNOWLEDGEMNTS

All praises to Allah, Lord of the universe. Only by His grace and mercy this thesis can be completed.

I wish to express my sincere thanks to my supervisor Prof. Dr. Mahiran Basri for her invaluable guidance, support and continuous encouragement throughout the course of the project.

My gratitude also goes to the members of my supervisory committee, Assoc. Prof. Dr. Faujan Ahmad and Prof. Dr. Abu Bakar Salleh for their useful suggestions and helpful comments throughout the course. I also wish to express my sincere gratitude to Prof. Dr. Abd. Manaf Ali from the Department of Biotechnology, Universiti Putra Malaysia for helping with the biological activities studies.

I would like to express my gratitude to the Ministry of Science and Technology Malaysia for their financial support under National Science Fellowship (NSF) scholarship.

I wish to express my deepest gratitude to my parents, brothers and sisters for their prayers, continuous moral support and unending encouragement. Special thanks are extended to other members of the academic and technical staff, students and friends who helped me in every way possible and providing a congenial and enthusiastic atmosphere in the laboratory.

viii

I certify that an Examination Committee met on 6th September 2004 to conduct the final examination of Yamin Yasin on his Doctor of Philosophy thesis entitled "Optimization of Lipase Catalyzed Synthesis of 3-O-benzoylbetulinic Acid" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

TAUFIQ YAP YUN HIN, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Chairman)

MD. NORDIN LAJIS, PhD

Professor Faculty of Science Universiti Putra Malaysia (Member)

MOHD. ASPOLLAH SUKARI, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ZURIATI ZAKARIA, PhD

Professor Faculty of Science Technology Universiti Kebangsaan Malaysia (Independent Examiner)

GULAM RUSUL RAHMAT ALI, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree for Doctor of Philosophy. The members of the Supervisory Committee are as follows:

MAHIRAN BASRI, PhD

Professor Faculty of Science Universiti Putra Malaysia (Chairman)

FAUJAN HJ. AHMAD, PhD

Associate Professor Faculty of Science Universiti Putra Malaysia (Member)

ABU BAKAR SALLEH, PhD

Professor Faculty of Biotechnology and Biomolecular Universiti Putra Malaysia (Member)

AINI IDERIS, Ph.D.

Professor/Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Putra Malaysia or other institutions.

YAMIN YASIN

Date:

TABLE OF CONTENTS

xii

Page

ABSTRACT	ii
ABSTRAK	v
ACKNOWLEDGEMENT	viii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	xvi
LIST OF FIGURES	xviii
LIST OF SCHEMES	xxi
LIST OF ABBREVIATIONS	xxii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	4
	Betulinic Acid	4
	Preparation of Betulinic Acid	4
	Betulinic Acid Derivatives	8
	Bioactivity of Betulinic Acid and its Derivatives	16
	Cytotoxicity Activity	16
	Anti Human Immunodeficiency Virus (HIV)	18
	Antiviral Activity	19
	Anti Bacterial Activity	19
	Synthesis of Betulinic Acid Derivatives	20
	Chemical Synthesis	20
	Enzymatic Synthesis	21
	Enzymes	21
	Enzymes Mechanism	22
	Enzymes in Organic Solvents	23
	Lipases as Practical Biocatalyst	27
	Sources of Lipase	31
	Lipase Specificity	32
	Immobilized Lipase	33
	Lipase-Catalyzed Reaction	34
	Factors Affecting Activity and Selectivity of Lipase	35
	Temperature	36
	Organic Solvent	36
	Water Content	38

	Response Surface Methodology	39
	Four Step Procedure in RSM Determination	40
	Identification Factors (step 1)	40
	Definition of Factor Levels (step 2)	40
	Experimental Design and Selection of Test	41
	Sample (step 3)	
	Statistical Analysis (step 4)	41
	Application of Response Surface Methodology (RSM)	43
	To the Enzymatic Reaction	
Ш	MATERIALS AND METHODS	46
	Chemicals and Materials	46
	Methodology	50
	Screening of Substrates	50
	Synthesis of 3-Acylbetulinic Acid	50
	Preparation of 3-Acylbetulinic Acid Standard	52
	Synthesis of 3-acetylbetulinic acid	52
	Standard Method of Protein Assay	53
	Bradford Method	53
	TNBS Method	54
	Optimization Studies	56
	Study on Individual Parameter Effects on the Synthesis	56
	of 3-Acylbetulinic Acid	
	Screening of Enzymes	56
	Effect of Different Reaction Time on the	57
	Esterification Reaction	
	Effect of Different Reaction Temperature on the	57
	Esterification Reaction	
	Effect of Amount of Enzyme on the Esterification	57
	Reaction	
	Effect of Molar Ratio of Substrates on the	58
	Esterification Reaction	
	Effect of Various Organic Solvent on the	58
	Esterification Reaction	
	Effect of Initial Water Activity (a_w) on the	58
	Esterification Reaction	
	Study on Interactive Effects of Enzymatic Reaction	60
	Parameter and their Optimization Using Response Surface	
	Methodology (RSM)	60
	Experimental Design	60
	Statistical and Graphical Analyses	61
	Optimization of Reaction and Model Validation	61
	Optimization Reaction	63
	Biological Activity Assay	64
	Procedure for Cytotoxic Assay	64
	Anti-fungal Activity Assay	66
	Anti-Microbe Activity Assay	66

IV	RESULTS AND DISCUSSION	68
	Analysis of Betulinic Acid	68
	Infrared Spectroscopy Analysis	68
	Nuclear Magnetic Resonance Analysis	68
	Mass Spectroscopy Analysis	71
	Screening of Substrates for Reaction with Betulinic Acid	71
	Reaction of Betulinic Acid with Benzoyl Chloride	75
	Preparation of Standard 3-Acylbetulinic Acid	79
	Product Identification	81
	Thin Layer Chromatography Analysis	81
	Fourier Transform Infrared Analysis	81
	Gas Chromatography Analysis	85
	Nuclear Magnetic Resonance Analysis	85
	GC-Mass Spectroscopy Analysis	99
	Preparation of 3-Acetylbetulinic acid	99
	Initial Screening of Biological Activity	104
	Optimization Studies	106
	Study on Individual Parameter Effects of the Synthesis	106
	of 3-Acylbetulinic Acid	
	Screening of Lipase for Specific Activity	106
	Effect of Reaction Time on Esterification Reaction	107
	Effect of Reaction Temperature on Esterification	109
	Reaction	
	Effect of Amount of Enzyme on Esterification	113
	Reaction	
	Effect of Mole Ratio of Substrate on Esterification	115
	Reaction	
	Effect of Organic Solvent on the Esterification	118
	Reaction	
	Effect of Initial Water Activity (a _w) on Esterification	121
	Reaction	
	Study on Interactive Effects of Enzymatic Reaction Parameter	124
	And their Optimization Using Response Surface Methodology	
	Analysis of Variance	124
	Regression Analysis	125
	Response Surface Analysis	132
	Interactive Effect of Reaction Time, Reaction Temperature	132
	and Amount of Enzyme	
	Reaction Temperature versus Amount	132
	of Enzyme (X_2X_3)	
	Reaction Time versus Amount of Enzyme (X_1X_3)	133
	Reaction Time versus Reaction Temperature (X_1X_2)	134
	Optimum Conditions	139
	Biological Activity Studies	145

Antiviral Activity Assay (Dengue)

67

	Cytotoxicity Assay	145
	Anti-viral Assay	151
	Anti-bacterial and Anti-fungus Assay	153
V	CONCLUSIONS AND RECOMMENDATIONS	155
	Conclusion	155
	Recommendations for Further Studies	158
BIBLIOGRAPHY		159 174
APPENDICES		
BIODATA OF THE AUTHOR		182