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ABSTRAK
Dalam kertas ini diperkenalkan satu kaedah memperoleh beberapa sub-kotak yang membatasi titik Kuhn-Tucker
menggunakan aritm~tik selang. Kaedah ini direka sehingga penjanaan beberapa sub-kotak seperti yang dit
erangkan dalam bahagian 12 (Hansen, 1980) boleh dielakkan dan pada ketika yang sama kaedah ini boleh
juga digunakan untuk mengira pekali Lagrange seperti yang dihuraikan dalam (Robinson, 1973).

ABSTRACT
In this paper, a method for obtaining sub-boxes which bound the Kuhn-Tucker point using interval arithmetic
is presented. This method is designed such that the generation of too many sub-boxes, as described in section
12 of (Hansen, 1980), is prevented while it is simultaneously used to compute the Lagrange multipliers as
described in (Robinson, 1973).

where D is a parallelepiped with sides parallel
to the coordinate axes, simultaneously avoiding
the disadvantage mentioned by Hansen in
section 12 of (Hansen, 1980).

1. INTRODUCTION
If each side of a box that is a parallelepiped with
sides parallel to the co-ordinate axes is divided
into two parts then this could give rise to 2" sub
boxes where n is the number of co-ordinate
axes. In order to prevent generation of too many
sub-boxes, Hansen (Hansen 1980) has suggested
that only one side is divided with largest width
in half.

In this paper, we shall show how to derive
a method for obtaining and computing 2" sub
boxes ~(i) (i = 0, ..., 2" - 1) of ~ which might
contain the Kuhn-Tucker point (Fiacco 1968)
corresponding to a global minimizer of the
problems of the special form

minimize f(x)
subject to xED E R" } (11)

In order to obtain such-boxes, we employ
interval arithmetic as explained in Section 2.

2. INTERVAL ANALYSIS

Definition 2.1
An interval ~ E I(R) = (intervals on real line} is
denoted by [xl' xs] where Xl and Xs are called
infimum and supremum respectively.

Definition 2.2
The binary arithmetic operations +, -', ., and I
are defined on I (R) according to

~ * y = {x * YIx E ~, Y E y; ~, y E I(R)1
- - -

in which *E {+, -, ., I} save that~Iy is not defined
if 0 E y.. -

Definition 2.3
An nxl interval vector which is called box x
= (~) fixl E I (R") has its element ~i = [XiI' XiS] E

I(R).
More details can be found in (Alefeld

Herzberger 1983).
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3. Preliminary Results
Consider the nonlinear programming problems
of the form 1\

minimize f(x) (x E D ~ Rn) (3.1)
subject to

c
i
(x) ~ 0 (i = 1, ... , m) (3.2)

tially decreases along z E 2", and initially in
creases or is constant along -Z E Z'i Thus if Z'2
t: 0 we would not expect x* to be a local
minimizer (Fiacco, 1968).
The following theorem says the existing of
Lagrange multiplier generally (Fiacco, 1968).

(3.4)

Sup'pose that x* E Rn is a feasible point for
° I RO(3.1) - (3.3) and that f: R ~ R , c;: ~

R'(i= 1, .. ,m),and h
j

: Rn ~ Rl (j = 1, ... , r)
have first partial derivatives at x*. Let c~ = C i (x *)
(i = 1, ... , m) etc, and let

(3.9)

(3.10)

(3.10)V,L(x*, u*, w*)=O.•

u',c;(x*)=O (i= l, ... ,m),

u'l ~ 0 (i =" 1, .. , m)
and

Definition 3.2
The point (xH , U*T, W*T)T E Rn+m+, is a Kuhn
Tucker (KT) point for (3.1) - (3.3) if and only
if (3.9) - (3.11) hold.•

In applying Theorem 3.1 one must be able
to determine whether the set Z'2 is empty or
not. Clearly, assuming that the function are dif
ferentiable, Z', = 0 !S a necessary and sufficient
condition for 'the existence of the generalized
Lagrange multipliers u* and w*.

Several conditions have been imposed to
ensure that the set Z'2 be empty at a local mini
mizer and we have given one of them in the
following discussion.

Definition 3.3
Let x* E Rn be a feasible ~oint for (3.1) - (3.3)
and suppose thatc; E C'(D) (i = 1, ... , m) and

I /I (j 1 ) h /I .h j E C (D) =, ... , r were Dc D IS an
open set containing the points which satisfy the
constraints. The first order constraint qualifica
tion holds at x* if and only if

Theorem 3.1
If (1) x* E Rn is a feasibl~ point for (3.1) - (3.3);
(2) fE CIQ»), c. E C1 (D) (i ?i-I, ... , m) and h

/I I J
E C 1 (D) (j = 1, ... , r) where DcDis an open
set co~taining t~=- ~oints whi;:h s~tisfy th~

constralOts; (3) Z 2- 0, then ::3 u E Rand w'"
E Rr such that

(3.8)

j=<1i =1

B"= (i E N+k(x*)= OJ, (3.5)

Z; = (z E RnlzTVc; ~ O( \if i E B*) /\ (3.6)

zTVh~ = 0 (j = 1, .. , r) /\ zTVf*~ O},

Z; = {z E ROlz TVC; ~ O( \if i E B") /\ (3.7)

zTVh ~ = 0 (j = I, .. , r) /\ z TVf* < O},

Z; = {ZE ROI(::3 i E B*, zTVc'; < 0) V

(::3jE {l, .. ,r), zTVh;;tO)},

and

hex) = 0 (j = 1, ... , r) (3.3)
J

where f:D ~ R
n
~ R ', ci:R

n
~ RiO = 1, .. ,m),

h .. Rn ---t RJ (j = 1, ... , r) are given continuously
differentiable functions and Dc D is an open
set containing the points which satisfy the
constraints.

In order to establish the first order neces
sary condition for (3.1) - (3 ..3) we need the fol
lowing definition and theorems whereas its detail
explanation can be found in (Fiacco, 1968).

Definition 3.1
The Lagrangean function L R

n
X R mX R' ~ R '

corresponding to (3.1) - (3.3) is defined by
m ,

L(x, u, w) = f(x)-Lu;c;(x) + LWhj(x j ) ••

where Vc'= Vc(x*)(i= l, .. ,m), Vh' =Vh
1 I J J

(x*) (j=I, ... ,r), Vf*=Vf(x*) and N+ is the set of
positive integer. The sets Z'I' Z'2' and Z'J are
disjoint and Z'I U Z'2 U Z'J = R

n
.

Observe that all feasible directions from x* must
he contained in~ U Z'i·Furthermore, f(x) ini-

((zt: 0) /\ (zTVc'; ~O( \if i E B")) /\

(zTVh> 0 (j = I, ...,r)))

implying that z is tangenial to a once differen
tiable arc emanating from x* and contained in
the feasible region.•
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Theorem 3.2 (Fiacco 1968)
If (1) x* E Rn is a feasible point for (3.1) - (3.3);

I i\"" I 1\ .
(2)fEC(D),C i EC(D) (l=I, ... ,m)andh.

17\ 1\ J
E C (D) (j = I! ... , r) where Dc D is an open
set containing the points which satisfy the
constraints; (3) the first order constraint quali
fication holds at x* th~n 3u* E Rm and w* E Rr
such that (X*T, U*T, W*T) Tis a Kuhn-Tucker point
for (3.1)-(3.3).

and

(4.7)

Clearly that c
j
(x) ~ 0 (i=I, ... , 4) .•

According to the discussion which has been
presented in Section 3, we have the following
theorem where its proof is similar to the Theo
rem 3.3. Therefore its proof is omitted from this
paper.

in which

and

Ci(X)=Xi-~il(i=l,...,n) (4.2)

5. THE DETERMINATION OF SUB·BOXES
In this section, we shall derive a method to split
iinto 2n sub-boxes which might contain Kuhn
Tucker point z* = (X*T, u*TF corresponding to
a global minimizer x* of f in ~ where n is the
number of components in int~rval vector ~.

Suppose that i = (.!. T , ~T ) T is a box which
is assumed to contain a Kuhn-Tucker point z*
= (X*T, y*T)T for (4.1)'where

~_(~ lI. T " " T_ - _, ...,E) and u , .. , u ).
In-I -2n

Definition 4.1
Strict complementary slackness is said to hold at
a Kuhn-Tucker point z* = (X*T, U*T) Tif and only
iffor i= 1, .. ,2n, u~ > 0 if ci(x*) = 0 and
u'i = 0 if ci(x*) > O.•

Theorem 4.2 (Mohd, 1990)
(a) Ifx*E int(.!.) is a solution of (4.1) then strict
complementary slackness holds at x*; (b) if x*
E ~ (.!.) (Boundary of~) is a solution of (4.1)
then strict complementary slackness holds at x*
if and only if Q;f(x*» 0 V iE {1, ...,nl such
thatx'il=~il and Cl,f(x*)<OViE {1,...,nl
such that x'i = ~ is' •

We are given ! but not ~. However we can
determine ~ , ...,~ which contain the corres-

I 2n

Theorem 4.1
If (1) X*I\E Rn is a feasible solution of (4.1); (2)

I I 1\ 1\
f E C (D), C i E C (D) (i= 1, .. ,2n) where D

cD is an open set containing the points which
satisfY the constraints; (3){V' c'ili E B* }are linearly
independent, then the first order constraint
qualification holds at x*.•

In order to obtain the computable bounds
of Lagrange multipliers for the minimizer of
(4.1) we need the following definition and
theorem.

(4.6)

(4.4)

(4.5)

CI(X)=XI-~II'

Example 4.1
Suppose that n = 2. Then

Theorem 3.3 (Fiacco, 1968)
If (1) x* ERn is a feasible point for (3.1) - (3.3);
(2) f E C1 (D), c. E C1<0) (i=l, ... , m) and h. E

1\ I 1\ J
OeD) (j = 1, ... , r) where Dc D is an open set
containing the points which satisfy the con
straints; (3) {Vc'ili E B*} u {Vh;lj = 1, .. ,r} are
linearly independent then the first order con
straint qualification holds at x*.•

1\

minimizef(x) (x E D~ R") }
(4.1)

subject to

ci(x) ~ 0 (i = 1, .. ,2m)

Ci(X) = ~i-"S -xi_;(i= n + 1, ...,2n) (4.3)

1\
where j E leD) is given, so that m = 2n. The
problem of bounding the solutions of (4.1) is
equivalent to problem (1.1).

4. THE NONUNEAR PROGRAMMING
PROBLEM EXPRESSED AS A SYSTEM

OF NONUNEAR EQUATIONS
ANDINEQUAUTIES

Consider the following special case of the
problem (3.1) - (3.3).
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ponding Lagrange multipliers as shown in
(Mohd, 1990).

Let us consider thTe case corresponding to
n=1. So ~ = (!,~,~,) .

Arrange the lagrange multiplier intervals given
in (5.1) - (5.2) and (5.3) - (5.6) in the form

(5.7)

U
2

E H

B

.........

c

and .D. D ..u ..u
3 4

o u u 0
- -2 -3-

..u.DD..u.
I 4

u u 0 0
-1 -2 --

(5.8)

In Fig 5.1, A - H are comes of the box
~ = (!,~, ~,)T.. As discussed in the previous
section that

I
Ci,Q,Q)T (X*E int(!)),

~= ([~II'~J11~I,Q)T(x*=~J1)'

([~'s'~,slQ,~/(X*=~IS):

Therefore the Kuhn-Tucker point might lie on
AB, AD or BF. So ~ can be split into 21 sub-boxes

(0) (1)-

~ ,and ~ which contain the Kuhn-Tucker
point z* and these are given by

and

il)=(liJl,m(~I)],~"Q)T. (5.2)

For n=2 we obtain

iO) = ([m(! I)' ~, s), m (~2)' ~ 2S],Q,Q'~3,~J·

(5.3)

i I) = ([m Ci , ), ~ IS)' (~21' m (~2)1Q,~ 2'~ 3' Q{

(5.4)

~(2) = ([ (~II' m Ci l )], [m(!2)' ~ 2S],~ I,Q,Q,~J

and (5.5)

with dimension 22 x 2n for n = 1, and 2 respec
tively. For i=l, ... , n, if ..u 7:-.D then..u = .D
and vice versa (See Definition 4.1.). Th~+;efore
if the first n columns of the matrices are known
then the last n colums can be determined and
vice versa. Also for i=l, ... , n if..u. 7:-.D then the
corresponding interval is[~;1' ill c!)] while if
..u; =.D then' the corresponding interval is
[m el), ~;sl

From the preceding remarks, we need
either the first n columns of the matrix or the
last n columns of the matrix only in order to de
termine 2" sub-boxes of ~ which contain the
Kuhn-Tucker point z*. If we replace all the
..u *.0 (i=I, ... ,n)inthefirstncolumnsof(5.7)
and (5.8) with unity then we obtain the
matrices

(5.9)
and

(5.10)

corresponding to n=l, and 2 respectively.
The rows of (5.9) and (5.10) can be

considered as binary numbers which are the
components of the vectors

(5.11)

and

corresponding to (5.9) and (5.10) respectively.
Therefore the box i 4

) for n = 4 has corres-

(3) ~ ~ T

~ = ([ (~II' m (!I )], [ 21' m Ci) 1 ~ 1'~4Q,Q,)

(5.6)

(0 1 2 3)T (5.12)
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ponding binary digits (0 1 0 0) which give the
lagrange multiplier pattern (0 1001 01 1), cor
responding to the lagrange multipliers

So

t'4) = ([m Ci), ~ Is1 [~21' me!)],

[mCi), ~3S]' [mCi). ~4S]'

Q, ~ 2' Q, Q, ~ 5' Q, ~ " ~ /.

6. ALGORITHM
In this section, we derive an algorithm written
in Pascal pseudo-code for construction the sub
boxes which have been discussed in the previ
ous sections. In the same algorithm we can see
that such sub-boxes can be called without
keeping them on the stack or computer memory.

The algorithm is as follows.

Data: ! E I(R"), ~ E I(R
2
"), and n E N+

1. for i : = 0 to 2n
- 1 do

(* Clearly we do not need to store the sub-
"Jboxes ~ (i=O, .... , 2n

- 1). *)
1.1. i';):=(O)

- - J n xl

1.2. converts a decimal integer i into the
corresponding n-digit binary number
b= (b\., .... ,b

n
).

1.3 for J' : = 1 to n do
til

(* Construct the sub-box ~ *)
1.3.1. if b

j
= 0

then

('J A A
1.3.1.l.~ :=[m(R),x Js ]

J J

1. 3. 1. 2. if x* E ! then

1.3.1.21.i,'d :=.fr.
2n+j n+j

else

Iii Q(~
1.3.1.3. .2 _- [~jI>m(.i)]

J J

1.3.1.4. if X*E i then

l.3.l.4.1.i';) :=~.
n +J J

(i)

1.4. the box ~ is processed for example by
Hansen's global optimization algorithm
(Hansen, 1980)

2. return

7. CONCLUSION
T T In this paper, we have shown that~= (!T,

~ ) can be split into 22n sub-boxes and given
the name fi' for i= 0, ..... , 2n-1. These sub
boxes can be processed for example to compute
and bound the global minimizer (s) of (Ll) by
the methods given in (Robinson 1973), and
(Shearer 1985), without keeping them in the
computer memory.

An algorithm given in Section 6 shows us
that we do not need computer memory to keep
all sub-boxes. Therefore we can compute and
bound the global minimizer (s) of (1.1) even
though n is large. This idea can be employed for
avoiding the disadvantage which is hightlight by
Hanses (Hansen 1980).
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