EFFECTS OF GROUND FLAXSEED SUPPLEMENTATION ON CARDIOVASCULAR DISEASE AMONG HEMODIALYSIS PATIENTS AT A GOVERNMENT HOSPITAL, IN TEHRAN, IRAN

SAMAN KHALATBARI SOLTAN

FPSK(m) 2013 5
EFFECTS OF GROUND FLAXSEED SUPPLEMENTATION ON CARDIOVASCULAR DISEASE AMONG HEMODIALYSIS PATIENTS AT A GOVERNMENT HOSPITAL, IN TEHRAN, IRAN

By

SAMAN KHALATBARI SOLTANI

Thesis submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Master of Science

January 2013
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Science

EFFECTS OF GROUND FLAXSEED SUPPLEMENTATION ON CARDIOVASCULAR DISEASE AMONG HEMODIALYSIS PATIENTS AT A GOVERNMENT HOSPITAL, IN TEHRAN, IRAN

By

SAMAN KHALATBARI SOLTANI

January 2013

Chairman: Rosita Binti Jamaluddin, PhD

Faculty: Medicine and Health Science

The leading cause of death in patients with chronic kidney disease including dialysis patients is cardiovascular disease (CVD). Approximately 50% of deaths in these patients are related to CVD. Among patients undergoing hemodialysis (HD), one of the major risk factors for CVD is lipid abnormalities. Besides, low level of serum albumin and high concentration of serum systemic inflammation markers, especially C-reactive protein (CRP) are important risk factors for CVD among patients undergoing HD.

The present study was conducted to investigate the effects of flaxseed supplementation on cardiovascular risk factors among patients undergoing HD. This was a randomized interventional study involving 38 patients on maintenance HD (20...
males, 18 females) with lipid abnormalities (Triglyceride > 2.26 mmol/L and/or high density lipoprotein-cholesterol < 1.1 mmol/L) in the age range of 23 to 77 years. Patients enrolled in the study did not have diabetes, inflammatory diseases, or infection disease, and none of them received omega-3 fatty acid supplement and lipid lowering drugs. They were randomly assigned to either a flaxseed or control group (n=19). Subjects in the flaxseed group received 40 g/d ground flaxseed for 8 weeks, whereas subjects in the control group consumed their usual diet, without any flaxseed supplementation. The outcomes of the study were evaluated at baseline, week 4 and 8. The primary outcomes were serum lipid profile, serum CRP and serum albumin levels. The secondary outcome measures were anthropometric measurements and dietary intake (assessed by 2-day record and one day food recall).

In this study, serum concentrations of triglyceride (TG; p < 0.001), total cholesterol (TC; p < 0.01), and low density lipoprotein-cholesterol (LDL-C; p < 0.01) decreased significantly within the flaxseed group over time by 30%, 14% and 17%, respectively. There were significant increases in serum concentrations of TG, TC, and LDL-C within the control group by 21%, 15% and 8%, respectively. The mean changes in serum TG, TC, and LDL-C were statistically significant from baseline to week 4 (p < 0.05) and 8 (p < 0.001) between the two groups.

Serum high density lipoprotein-cholesterol (HDL-C) and serum albumin increased significantly by 16% and 9%, respectively within the flaxseed group over time (p < 0.01). There was significant reduction in serum HDL-C and albumin level within the
control group over time by 10% and 5%, respectively. Serum CRP concentration reduced significantly by 31% within the flaxseed group over time (p < 0.05), whereas no significant change was observed in the control group. The mean changes in serum CRP was significant difference between the two groups (p < 0.05).

Baseline dietary intakes data were comparable with the exception of the control group having higher intake of dietary fiber than the flaxseed group (p < 0.05). At baseline, mean intakes of energy, protein, carbohydrate and dietary fiber in a large percentage of the subjects in both groups were lower than the recommended intakes. At week 8, subjects in the flaxseed group achieved the recommendation for energy (30.5 ± 9 kcal/ kg body weight/day), protein (1.2 ± 0.36 g/kg body weight/day) and dietary fiber (25 ± 4 g/d).

In conclusion, 40 g/d flaxseed supplementation for 8 weeks improved lipid profiles and serum albumin level and reduces systemic inflammation in patients on maintenance HD with lipid abnormalities in addition to an overall dietary improvement.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains

KESAN SUPPLEMENTASI BIJI FLAX TERHADAP PENYAKIT KARDIOVASKULAR DI KALANGAN PESAKIT YANG MENJALANI HEMODIALYSIS DI HOSPITAL KERAJAAN, TEHRAN, IRAN

Oleh

SAMAN KHALATBARI SOLTANI
Januari 2013

Pengerusi: Rosita Binti Jamaluddin, PhD
Fakulti: Perubatan dan Sains Kesihatan

Penyebab utama kepada kematian pesakit buah pinggang kronik termasuk pesakit yang sedang menjalani dialisis adalah penyakit kardiovaskular (PKV). Hampir 50% daripada kematian pesakit-pesakit ini berkaitan dengan penyakit kardiovaskular. Dalam kalangan pesakit yang sedang menjalani rawatan hemodialisis, salah satu faktor risiko utama penyakit kardiovaskular adalah ketidaknormalan lemak dalam darah. Disamping itu, tahap kepekatan serum albumin yang rendah dan penanda serum keradangan sistemik, terutamanya protein C-reaktif (CRP) yang tinggi merupakan faktor risiko penting bagi penyakit kardiovaskular dalam kalangan pesakit yang sedang menjalani hemodialisis.
Kajian ini dijalankan untuk mengkaji kesan suplemen biji flax ke atas faktor risiko penyakit kardiovaskular dalam kalangan pesakit yang sedang menjalani hemodialisis. Ini adalah satu kajian intervensi rawak yang melibatkan 38 orang pesakit yang sedang menjalani rawatan hemodialisis (20 lelaki, 18 perempuan) yang mempunyai ketidaknormalan lemak dalam darah (Trigliserida > 2.26 mmol/L dan/atau kolesterol lipoprotein berketumpatan tinggi <1.1 mmol/L) dalam lingkungan umur 23 hingga 77 tahun. Pesakit yang mendaftar dalam kajian ini tidak mempunyai kencing manis, penyakit keradangan atau penyakit jangkitan, dan tidak seorang pun daripada mereka menerima suplemen asid lemak omega-3 dan dadah yang mengurangkan lemak. Mereka dibahagikan secara rawak kepada kumpulan intervensi (diberikan suplemen biji flax) atau kumpulan kawalan (n=19). Pesakit dalam kumpulan intervensi menerima 40 g/hari suplemen biji flax selama 8 minggu, manakala pesakit dalam kumpulan kawalan hanya mengambil diet biasa tanpa suplemen biji flax. Hasil kajian telah dinilai pada permulaan, minggu ke-4 dan ke-8. Hasil utama adalah serum untuk profil lemak, CRP dan paras albumin. Hasil kedua yang diukur adalah ukuran antropometri dan pengambilan diet (dinilai dengan rekod pengambilan makanan selama 2 hari dan satu hari dengan mengingat makanan).

Dalam kajian ini, kepekatan serum trigliserida (TG; p < 0.001), jumlah kolesterol (TC; p < 0.01), dan kolesterol lipoprotein berkepadatan rendah (LDL-C; p < 0.01) menurun dengan ketara dalam kumpulan intervensi dengan masa masing-masing sebanyak 30%, 14% dan 17%. Terdapat peningkatan yang signifikan dalam serum TG, TC, dan LDL-C dalam kumpulan kawalan dengan masing-masing sebanyak
21%, 15% dan 8%. Min perubahan dalam serum TG, TC, dan LDL-C adalah signifikan secara statistik dari permulaan ke minggu ke-4 (p<0.05) dan ke-8 (p<0.001) antara dua kumpulan tersebut.

Serum kolesterol lipoprotein berketumpatan tinggi (HDL-C) dan albumin meningkat dengan signifikan masing-masing sebanyak 16% dan 9% dalam kumpulan intervensi dengan masa (p<0.01). Terdapat penurunan yang signifikan dalam serum HDL-C dan albumin dalam kumpulan kawalan dengan masa masing-masing dengan 10% dan 5%. Kepekatan serum CRP berkurang dengan signifikan sebanyak 31% dalam kumpulan intervensi dengan masa (p<0.05) dimana tiada perubahan yang ketara dilihat dalam kumpulan kawalan. Min perubahan dalam serum CRP adalah berbeza secara signifikan antara dua kumpulan (p<0.05).

Data permulaan bagi pengambilan makanan dibandingkan dengan pengecualian dari kumpulan kawalan yang mempunyai lebih tinggi pengambilan serat daripada kumpulan intervensi (p<0.05). Pada permulaan, min pengambilan tenaga, protein, karbohidrat dan serat makanan dalam peratusan yang besar yang diambil oleh subjek dalam kedua-dua kumpulan adalah lebih rendah daripada pengambilan yang disyorkan. Pada minggu ke-8, subjek dalam kumpulan intervensi telah mencapai tahap pengambilan yang disyorkan untuk tenaga (30.5 ± 9 kkal/kg berat badan/hari), protein (1.2 ± 0.36 g/kg berat badan/hari) dan serat (25 ± 4 g/hari).

Kesimpulannya, suplemen biji flax sebanyak 40 g/hari selama 8 minggu boleh
memperbaiki profil lemak dalam darah dan paras serum albumin serta mengurangkan keradangan sistemik dalam kalangan pesakit yang sedang menjalani hemodialisis yang mempunyai ketidaknormalan lemak dalam darah di samping memperbaiki keseluruhan pengambilan makanan.
ACKNOWLEDGEMENT

I would like to express my deep and sincere gratitude to all those who provided me the support and encouragement necessary to complete this journey. I would like to thank my supervisor, Dr. Rosita Jamaluddin for her supervision and enormous support from the very beginning. Her detailed comments have made this thesis possible. I would like to express my gratitude to my three co-supervisors, Dr. Barekatun Nisak Mohd Yusof, Dr. Hadi Tabibi and Dr. Su Peng Loh, all of whom advised me and offered me their support throughout these times.

My sincere thanks to Dr. Shahnaz Atabak, from Modarres Hospital, Tehran, Iran. Her expertise in clinical and research of patients undergoing hemodialysis was invaluable. I thank all the staff of the Hemodialysis Unit in Modarres Hospital for their assistance and cooperation throughout the study. Special thanks to all the patients who consented to join the study. Their cooperation and patience are highly appreciated.

I acknowledge the faculty of Medicine and health Science of Universiti Putra Malaysia members and the head of the department of Nutrition and Dietetics for their assistance to run this experiment.

My loving thanks to my beloved parents and sisters for their love and fortitude. This work would not have been possible without the endless support of my family. I would like to thank all the precious friends for their encouragement during the research. To them I dedicate this thesis.
I certify that a Thesis Examination Committee has met on 17 January 2013 to conduct the final examination of Saman Khalatbari Soltani on her thesis entitled “Effects of Ground Flaxseed Supplementation on Cardiovascular Disease among Hemodialysis Patients at a Government Hospital, in Tehran, Iran” in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U.(A) 106] 15 March 1998. The committee recommends that the student be awarded the Master of Science.

Members of the Thesis Examination Committee were as follows:

Norhaizan binti Mohd Esa, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Chan Yoke Mun, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Mohd Sokhini bin Abd Mutalib, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Internal Examiner)

Suzana Shahar, PhD
Professor
Faculty of Allied Health Sciences
Universiti Kebangsaan Malaysia
(External Examiner)

SEOW HENG FONG, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date: 21 March 2013
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The members of the Supervisory Committee were as follows:

Rosita Binti Jamaluddin, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Chairman)

Barakatun Nisak Mohd Yusof, PhD
Senior Lecturer
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Su-Peng Loh, PhD
Associate Professor
Faculty of Medicine and Health Sciences
Universiti Putra Malaysia
(Member)

Hadi Tabibi, PhD
Faculty of Nutrition and Food Technology
Shahid Beheshti University of Medical Sciences
(Member)

BUJANG BIN KIM HuAT, PhD
Professor and Dean
School of Graduate studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously, and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

SAMAN KHALATBARI SOLTANI

Date: 17 January 2013
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>v</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>ix</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>x</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF APPENDICES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xxi</td>
</tr>
</tbody>
</table>

CHAPTER

1 INTRODUCTION

1.1 Introduction 1

1.2 Problem statement 4

1.3 Significance of study 6

1.4 Objectives of study 7

1.4.1 General objective 7

1.4.2 Specific objectives 7

1.5 Study hypotheses 8

1.4 Conceptual framework 8

2 LITERATURE REVIEW

2.1 Epidemiology of chronic kidney disease 11

2.1.1 Diagnosis of CKD 12

2.1.2 Renal replacement therapy 13

2.1.3 Hemodialysis 14

2.2 CVD risk among patients on maintenance HD 15

2.2.1 Dyslipidemia 17

2.2.2 Inflammation 20

2.2.3 Malnutrition 21

2.3 Management of CVD in patients on maintenance HD 22

2.4 Dietary factors that alter CVD risk factors 24

2.5 Flaxseed 25
2.5.1 History of flaxseed usage in health 26
2.5.2 Nutritional composition of flaxseed 26
2.5.3 Nutritional composition of different forms of flaxseed 28
2.6 Whole ground flaxseed and CVD risk factors 29
2.6.1 Animal studies 29
2.6.2 Clinical studies 30
2.7 Alpha-linolenic acid 33
2.7.1 Alpha-linolenic acid conversion to eicosapentaenoic acid and docosahexaenoic acid 34
2.7.2 Alpha-linolenic acid and health 36
2.7.3 Alpha-linolenic acid in flaxseed and CVD 37
2.8 Lignans 38
2.8.1 Lignans and health 39
2.8.2 Flaxseed lignan and CVD risk factors 40
2.9 Dietary fiber 43
2.9.1 Fiber and health 44
2.9.2 Fiber in flaxseed and CVD risk factors 46
2.10 Flaxseed safety 47
2.11 Flaxseed and other disease 48
2.11.1 Flaxseed and cancer 48
2.11.2 Flaxseed and diabetes 49
2.11.3 Flaxseed and kidney disease 50

3 METHODOLOGY
3.1 General study design 52
3.2 Study Location 53
3.3 Subjects 55
3.4 Sample size determination 55
3.5 Screening and recruitment 56
3.6 Randomization 57
3.7 Dietary intervention 58
3.7.1 Nutrient content of flaxseed 59
3.7.2 Process of intervention implementation 60
3.8 Background information of participants 61
3.8.1 Socio-demographic information 61
3.8.2 Medical history information 61
3.9 Anthropometric measurements and blood analysis 62
3.9.1 Anthropometric measurements 62
3.8.2 Blood collection procedures 64
3.9.3 Blood lipid profile analysis 64
3.9.4 Analysis of CRP 67
3.9.5 Analysis of albumin 68
3.10 Dietary assessment 68
 3.10.1 Two-day dietary record and 1 day recall 68
 3.10.2 Nutrient analysis 69
3.11 Data analysis 69

4 RESULTS AND DISCUSSION
4.1 Recruitment, subject enrolment and follow-up 71
4.2 Baseline comparisons between the flaxseed and control group 73
 4.2.1 Demographic characteristics 73
 4.2.2 Medical information 75
 4.2.3 CVD risk factors 82
 4.2.4 Anthropometric measurements and nutritional status 82
 4.2.5 Dietary intake 85
4.3 Effects of flaxseed supplementation 88
 4.3.1 Changes in CVD risk factors 106
 4.3.2 Anthropometry changes 106
 4.3.3 Dietary changes 108

5 SUMMARY, CONCLUSION AND RECOMMENDATIONS FOR FUTURE RESEARCH
5.1 Summary 121
5.2 Conclusion 122
5.3 Limitations of the study 123
5.4 Recommendations 124

REFERENCES 126
APPENDICES 146
BIODATA OF STUDENT 155
LIST OF PUBLICATIONS, PRESENTATIONS AND AWARDS 156