

UNIVERSITI PUTRA MALAYSIA

TRANSESTERIFICATION OF PALM OIL USING HETEROGENEOUS NaOH/Al2O3 CATALYST FOR BIODIESEL PRODUCTION

NURUL FITRIYAH BINTI ABDULLAH

FS 2011 106

TRANSESTERIFICATION OF PALM OIL USING HETEROGENEOUS

NaOH/AI2O3 CATALYST FOR BIODIESEL PRODUCTION

By

NURUL FITRIYAH BINTI ABDULLAH

Thesis Submitted to School of Graduate studies, Universiti Putra Malaysia, in

Fulfilment of the Requirements for the Degree of Master of Science

September 2011

Abstract of the thesis presented to the Senate of Universiti Putra Malaysia in fulfillment of the requirement for the degree of Master of Science TRANSESTERIFICATION OF PALM OIL USING HETEROGENEOUS NaOH/AI2O3 CATALYST FOR BIODIESEL PRODUCTION By

NURUL FITRIYAH BINTI ABDULLAH

September 2011

Chairman: Professor Taufiq Yap Yun Hin, PhD, CChem, FRSC (UK)

Faculty: Science

Biodiesel fuel has become more attractive recently because of environmental concerns and the limited resources of fossil fuel. Biodiesel also recognized as "green fuel" with several advantages, ie; safe, non-toxic and biodegradable compared to petroleum diesel. In this work, biodiesel production by transesterification of palm oil with methanol has been studied in a heterogeneous system using sodium hydroxide loaded on alumina. A series of solid base catalyst consisting of NaOH supported on commercial alumina were prepared for the transesterification of palm oil with methanol in order to find a support which can work better compared to homogeneous catalyst. During catalyst preparation, different amount of sodium compounds were impregnated into alumina. A screening of the reaction conditions has been carried out by examining the effect of methanol/oil molar ratio, catalysts amount, reaction temperature and reaction time. The prepared catalysts were then characterized by using X-Ray Diffraction (XRD) Analysis, Fourier Transform Infrared (FT-IR) Spectrometer, Brunner-Emmett-Teller (BET) Surface Area Measurement, Scanning Electron Microscopy (SEM) and Temperature Programmed

Desorption of Carbon Dioxide (CO2-TPD). Gas Chromatography (GC) and FT-IR was further used for characterization of biodiesel samples. The experimental results indicated that alumina supported with 50 wt% NaOH and calcined in air at 250°C for 3h (50NaC) gave the highest basicity and the best catalytic activities for transesterification reaction. The catalytic activities of the catalyst are explained by formation of aluminates that originated the stronger basic sites of the catalyst. The formation of aluminates is shown by characterization using XRD and FT-IR. The highest conversion 99% reached when the transesterification reaction was carried out at 15:1 methanol/oil molar ratio with 3 wt% catalyst, reaction temperature 60°C and reaction time 3h. Abstrak tesis yang dikemukan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains PENGTRANESTERAN MINYAK SAWIT DENGAN MENGGUNAKAN MANGKIN HETEROGEN NaOH/Al2O3 UNTUK PENGELUARAN BIODIESEL Oleh NURUL FITRIYAH BINTI ABDULLAH

September 2011

Pengerusi: Profesor Taufiq Yap Yun Hin, PhD, CChem, FRSC (UK)

Fakulti: Sains

Biodiesel telah menjadi lebih menarik baru-baru ini kerana keprihatinan persekitaran dan sumber bahan bakar fosil yang terhad. Biodiesel juga diakui sebagai "bahan bakar hijau" dengan beberapa kelebihan, iaitu; selamat, tidak beracun dan boleh dikitar semula jika dibandingkan dengan hasil petroleum. Dalam kajian ini, pengeluaran biodiesel melalui pengtransesteran minyak sawit dengan metanol telah dikaji dalam suatu sistem heterogen menggunakan natrium hidroksida dimuat diatas alumina. Siri mangkin alkali NaOH yang terdiri daripada alumina komersial dihasilkan untuk tindak balas pengtransesteran minyak sawit dengan metanol dalam rangka untuk mencari sokongan yang boleh berfungsi lebih baik berbanding dengan mangkin homogen. Semasa penghasilan mangkin, jumlah sebatian natrium yang berbeza diresapkan ke dalam alumina. Kajian terhadap keadaan tindak balas telah dilakukan dengan menyemak kesan nisbah molar metanol / minyak, jumlah mangkin, suhu tindak balas dan masa tindak balas. Mangkin yang dihasilkan kemudian dicirikan dengan menggunakan difraksi sinar-X (XRD), spektrometer Fourier Transform infra merah (FT-IR), pengukuran luas

ACKNOWLEDGEMENTS

With great thanks to Almighty Allah s.w.t and His mercy for giving me the strength and health to do this project until it is done.

First, I would like to take this opportunity to express my sincere gratitude and appreciation to my supervisor, Prof. Dr. Taufiq Yap Yun Hin for his good supervision, suggestion and constructive comment, during the course of this project. Without his valuable guidance, advices, I would not have been able to present my work. I also dedicated my deepest appreciation to my co-supervisor, Prof. Dr. Mahiran Basri, chemistry department staffs and my lab mates for their contribution and cooperation. Finally, to my beloved family, especially to my mother and husband, thanks for all moral encouragement, support and sacrifices which had helped me in undertakings and completing my study. I certify that a Thesis Examination Committee has met on 23 September 2011 to conduct the final examination of Nurul Fitriyah binti Abdullah on her thesis entitled 'Transesterification of Palm Oil using Heterogeneous NaOH/Al2O3 Catalyst for Biodiesel Production' in accordance with the Universities and University College Act 1971 and the Constitution of the Universiti Putra Malaysia [P.U(A) 106] 15 March 1998. The Committee recommends that the student be awarded Master of Science. Members of the Thesis Examination Committee were as follows: Tan Kar Ban, PhD Dr. Faculty of Science Universiti Putra Malaysia (Chairman) Kamaliah Bt. Sirat, PhD Dr. Faculty of Science Universiti Putra Malaysia (Internal Examiner) Faujan B. Hj. Ahmad @ Hj. Amat, PhD Professor Faculty of Science Universiti Putra Malaysia (Internal Examiner) Mohd Ambar Yarmo, PhD Professor

Faculty of Science and Technology

Universiti Kebangsaan Malaysia

(External Examiner)

SEOW HENG FONG, PhD

Professor and Deputy Dean

School of Graduate Studies

Universiti Putra Malaysia

Date: 25 January 2012

This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Master of Science. The

members of Supervisory Committee were as follows:

Taufiq Yap Yun Hin, PhD

Professor

Faculty of Science

Universiti Putra Malaysia

(Chairman)

Mahiran Basri, PhD

Professor

Faculty of Science			
Universiti Putra Malaysia			
(Member)			
BUJANG KIM HUAT, PhD	-		
Professor and Dean			
School of Graduate Studies			
Universiti Putra Malaysia			
Date:			

DECLARATION

I declare that the thesis is my original work except for the quotation and citations which have been duly acknowledged. I also declare that it has not been previously and is not concurrently, submitted for any other degree at Universiti Putra Malaysia or at any other institution.

NURUL FITRIYAH BINTI ABDULLAH

Date: 23 September 2011

TABLE OF CONTENTS

Page

ABSTRACT

ABSTRAK

ACKNOWLEDGEMENTS vi

APPROVAL

- DECLARATION
- LIST OF TABLES
- LIST OF FIGURES
- LIST OF ABBREVIATIONS

CHAPTER
1. INTRODUCTION
1.1 Energy Demand and Environmental Concerns
1.2 Importance of Renewable Energy
1.3 Advantages of Biodiesel as Fuel
1.4 World Biodiesel Production
1.5 Development of Biodiesel in Malaysia
1.6 Scope and Objectives of This Thesis

vii

ix

xii

xiii

xiv

1

2

3

5

8

10

2. LITERATURE REVIEW

2.1 Technologies and Processes in Biodiesel Production	12
2.2 Transesterification of Triglycerides to Biodiesel	14
2.2.1 Homogeneous Catalyzed Transesterification	17
2.2.2 Heterogeneous Catalyzed Transesterification	21
2.3 Supported Catalysts in Transesterification Reaction	24
2.4 Main Factors Affecting Transesterification Reaction	26
2.4.1 Molar Ratio of Alcohol to Oil	26
2.4.2 Catalysts Amount (Concentration)	27
2.4.3 Reaction Temperatures	28

2.4.4 Reaction Times	29
2.5 Palm Oil as Biodiesel Feedstock	30
2.6 Biodiesel from Palm Oil	32
3. MATERIALS AND METHOD	
3.1 Materials and Gases	34
3.2 Preparation of NaOH/AI2O3 Catalysts	35
3.3 Catalysts Characterization	
3.3.1 X-Ray Diffraction (XRD) Analysis	36
3.3.2 Fourier Transform Infrared (FT-IR) Spectrometer	36
3.3.3 Brunner-Emmett-Teller (BET) Surface Area Measurement	37
3.3.4 Scanning Electron Microscopy (SEM)	37
3.3.5 Temperature Programmed Desorption of Carbon Dioxide	
(CO2-TPD)	37
3.4 Determination of Sapon <mark>ification Value</mark>	38
3.5 Transesterification Reaction	39
3.6 Biodiesel Characterizations	
3.6.1 Gas Chromatography (GC)	40
3.6.2 Pour Point Analysis	41
4. RESULTS AND DISCUSSION	
4.1 Catalysts Characterizations	
4.1.1 X-Ray Diffraction (XRD) Analysis	42
4.1.2 Fourier Transform Infrared (FT-IR) Spectrometer	44
4.1.3 Brunner-Emmett-Teller (BET) Surface Area Measurement	46
4.1.4 Scanning Electron Microscopy (SEM)	47
4.1.5 Temperature Programmed Desorption of Carbon Dioxide	

(CO2-TPE))
----------	----

4.2 Methyl Ester Characterizations	
4.2.1 Fourier Transform Infrared (FT-IR) Spectrometer	50
4.2.2 Gas Chromatography (GC)	52
4.3 Transesterification Reactions	
4.3.1 Methanol/oil Molar Ratio	53
4.3.2 Catalysts Amount	55
4.3.3 Reaction Temperatures	56
4.3.4 Reaction Times	57
4.3.5 The Effect of Surface Area on Transesterification Reaction	58
4.3.6 The Effect of Basicity on Transesterification Reaction	60
4.4 Methyl Ester Properties	
4.4.1 Pour Point Analysis	61
5. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE	
RESEARCH	
5.1 Conclusions	63
5.2 Recommendations for Future Research	66
REFERENCES	68
BIODATA OF STUDENT	79
LIST OF PUBLICATIONS	80