
Pertanika 11(1),115-123 (1988)

Automorphisms of Fuchsian Groups of Genus Zero

ABU OSMAN BIN MD. TAP
Department ofMathematics,

Centre for Quantitative Studies

Universiti Kebangsaan Malaysia
43600 Bangi, Selangor, Malaysia.

Keywords: Automorphisms; Fuchsian groups; braid groups; mapping class groups; Seifert fibre groups.

ABSTRAK

Setiap automorfisma kumpulan Fuchsan diaruh oleh suatu automorfisma kumpulan bebas. Kertas
ini memberikan suatu persembahan kumpulan automorfisma bagi kumpulan Fuchsan genus sifar melalui
kumpulan tocang. Sebagai sampingannya kumpulan kelas pemetaan tulen dan kumpulan serabut Seifert
dibincangkan.

ABSTRACT

Every automorphism in Fuchsian group is induced by some automorphism of a free group. This
paper gives a presentation of a automorphism group of Fuchsian group of genus zero via braid groups.
We also obtained the pure mapping class groups and the Seifert Fibre Groups.

a.a.(x) = a.(a(x))
1 J I J .

1. BRAID GROUPS

Artin 0925, 1947) defined the braid group (the
full braid group) of the plane, Br, with r strings as:

0.1 )
, Ii - jl ~ 2

l~i~r-1.

Defining relations:

Generators: ai

a·a. = a.a.
I J J I

The braid group, B , can be looked upon as
r

the subgroup of the automorphism group of a free
group of rank r. We will adopt the convention of
operating from right to left, that is

Let U: Br -+ Lr be defined by u(a
i
) = (i i + I),

for I .;;;; i ~ r-I , where L is a symmetric group
r

on r letters. Let P = ker u. Then P is called the
r r

pure braid group and is known to have the follow·
ing presentation: Generators:

INTRODUCTION

A co-compact Fuchsian group, r, is known to have
the following presentation:

r g
= II x. rr [a., b) = 1 >

i = i I j = 1

where g ~ 0, r ~ 0, mi ~ 2 and [a, b) = aba-l b-l .

(See (5)). The integers ml , m2, .... , mr are called
the periods and g is called the genus. We say r has

signature (g; mt, m2, .... , mr)' If g = 0, we simply
write (m I , m2 , ... ,mr) for (0; ml' m2, .... , mr)'
If g = 0, r = 3, we call (Q, m, n) the triangle group.

r is the fundamental group of some surface.
By ielsen's theorem, every automorphism in the
fundamental group of a surface is induced by a
self-homeomorphism of the surface. With abuse
of language, we call those automorphisms induced
by the orientation-preserving self-homeomor­
phisms of the surface, the orientation-preserving
automorphisms, denoted by Aut+. In this paper,
we will give a presentation of Aut+ r, for r a
Fuchsian group of genus zero.
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-1 - 1 -1
A.. = 0 0 ... 0 0i20i+ 1 ....

1J j -1 j - 2 i + 1

o· 20. l,l";;i<j<r
J - J-

Defining relations:

A-IA .. At
st IJ s

A .. , if s < t < i <j or i < s < t <j
IJ

A -I A A· if t = i.. sJ'sj IJ

A -I A -1 A .. A . A .. , if s = i <j < t (1.2)
.. tJ IJ tJ IJIJ

-I A-~ A A A -I A-I A A
Asj tJ Asj tj ij tj sj tj sj'

ifs<i<t<j

As a representation of the automorphism of

the free group F
r

= < XI, X2, ...., xr >, we have.

The center of Br , r ~ 3, is the infinite cyclic sub­
group generated by

l = (0 1or' 0r_/ = (A 12) (A 23 A 13) ...

(Ar _ 1 rA -2 r ... Al )., r, r

0.7)

(See Birman, 1974 and Chow, 1948)

We now state the well-known necessary and
sufficient condition for an automorphism of a
free group to be an element of the braid group Br.

Theorem 1

Let F r == < xl' x2 ' ... , xr >. Then ~ f Br C Aut Fr

if and only if ~ statisties:

Defining relations:

~i~i+1~i = ~i + 1~i~i+1

(Artin, 1925 and Birman, 1974) (See [11, [3])

The mapping class groups are closely related
to the braid groups and the automorphism groups
of the Fuchsian groups. (See [31, [71). The map­
ping class group (full mapping class group),
(M(o, r), is known to have the following presenta­
tion:

Generators: ~. , 1";; i";; r - 1.
1

2 _" r
where ( ) is a permutation and

PI /12 /1r

\ = '\ (xl' x2" , Xr)'

0.5)

0.3)

0.4)

,ifs=i

,if t = i

, if t < i or i < s

for j * i, i + 1.X·~X. ,
J J

Note:
r _ )r

(0102 ... or_1) -(Or_1 0 r_2.,, 0 1

= l(xi X2 .. · Xr)

, li - j I~ 2
(Ar _ 1, rAr-2,r ... A2rA 1r) (Ar _ 2, r-1 Ar _ 3, r-1

... (A23A 13) (A 12 ) ... A1,r-1) ... (1.6)

H·=n·
1 J J 1

~1~2'" ~r-2~\-1~r-2'" ~2~1 = 1

( 1.8)

(A 12) (A23A13) ... (Ar _ 1, rAr-2, rOO' AIr)

= l(x
1
x

2
... x/

2. AUTOMORPHISM GROUPS

where I ('Y) denotes the inner automorphism

X~ 'YX'Y-I

We now state a restricted version of Zieschang's
theorem (966):
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Theorem 2.1.
m.

Let r = < xI ,x2 ' . - , .... , xr [xi 1 = x I x2 ··· xr:.1 >
be a Fuchsian group of genus zero and r =

<?1'?2' ... ,~r > be a free group of rank r. Then

every 1> € Aut+ r is induced by some </> € Aut r
staisfying:

k
~a. X .. , X La where L a· = r be the symmetric

1 k i = I 1 '

group corresponding to the permutation of the
periods. Then we have:

k
v: B ~ L J 1T L J {t}

r r i = I ai

........................ ............ - ........... -1
</>(x.) = A.x A.

1 1 J1i 1
, I ,,;;;; i";;;; r

(2.1.)

We are interested in the structure of the groups V-I

k k
( .1T La) and 'T/V- I

(1T L ) defined by:
1 =IIi= I' ai

.....................
and AI' A2 , ... '\' A € r

.......
Let l/!: r ~ r, l/!(x.) = x·, I";;;; i ,,;;;; r be

1 1 '

the natural homomorphism. if </> € Aut r satifies
(2.1.), then there is a unique 9 € Aut+ r defined
by:

* ) k *Br < 'T/v-I (1T L ) ( "'")P
r

r
i = I a i

r'11

I" I T/

Br
k p (2.3)V-I ( 11 La) r

1
i= I 1

I
k 1"v I

.t- v

L ') '"') [I]r ( 1T L (

i= 1 ai

. _. r
) is a permutation with m _

II J1.-
"'r 1

2

m·
1

</>r ----:.--...~ r

We know that every automorphism of r can
be obtained in this way by Theorem 2.1. The set
of all such automorphisms "i of r forms a sub­
group of Aut r which is denoted by A(r). By de­
finition B C A'd\ The correspondence "i ~ </>, r .....................
defines a homomorphism '11: A(r) -: Aut+ r.
We denote 'T/(Br) = Br *, 'T/(Pr) = Pr . Without
ambiguity, we will use the same symbol for the

* *elements in B , (respectively, P ), corresponding
r r

to the elements in Br , (respectively, Pr>-
As we see, </> € Aut+ r maps x· into a conju­

1
gate of XII' with mil' = mI" The intermediate

,..1 *,..1 *
groups between Prand Br (and hence the inter-

mediate groups between P and B ) depend strong-
r r k

lyon the periods and the permutation. Let. 1T L~.=
1= I .....1

r ------''-----....) r

(2.2)

Let us simplify the notation of the signature
of r as:

a l a 2 ak(m I ,m2 , ... , mk ) (2.4)

k
where. L a

l
· = r, to mean that the first a l genera-

I = I
tors have period m I' the next a2 generators have

period m2 , ... , and the last ak generators have

~eriod mk - We set ao = 0, the significance of

which will become clear later for the simplicity
n

of notation. Let Qn = L ai' 0 ,,;;;; n ,,;;;; k. Then
i=O

QO = 0 Q = a I Q - a +a Q - r, I '2- 1 2' .... , k - .

Then the defining relations of r with signa­
ture (2.4) are:

m
Xi n+ I = I , for Qn + I ,,;;;; j ,,;;;; Qn+ I ' 0 ,,;;;; n ,,;;;; k - I.

From the homomorphism v, we then see that
k

the generators of v-I (1T L ) are:
i = I ai
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ai for I ~i~r-I,i*Qn,1 ~n~k -1. (2.6) by (} Q' 1 ~ Q~ r, then we have the following:

From the definition of A.. in terms of a.'s
IJ I '

we see that it suffices to substitute (2.7) with:

A.. for 1~ i <J' ~ rIJ . (2.7)

e.
J

(a a )I-rr-l r-2 ... a2

( )i-r
ar _ 1 ar _2 ... ai + I

e ( )r-l
r-l = ar_ 2 ar_ 3 ... a2 a l

(2.8)

Hence, (2.6) and (2.8) form a sufficient set of
k

generators of v- 1(. II La)'
1= 1 I

er

(2.9)

The defining relations are those of the braid
group and the pure braid group wherever definable

k
corresponding to the symmetric group 1T L .

i = I ai

We then have the following:

Theorem 2.2.

k
v- Ie 1T 1 1/1a) admits a presentation with generators:

I = I

h ' *were a. s 'lOW are the elements of B Since each
J r'

element Xi is mapped on a conjugate, it follows
then by definition that I(r) C P *.

r

Remarks 2.1.

I. Note that with the action on r (that is consi-
dering a.'s as the elements of B*) ,

I r

a., for 1 ~ i ~ r - 1 i * Q ,I ~ n ~ k - I
I 'n

Ai Q + I' for I ~ i ~ Q ,1 ~ n ~ k - 1
, n n

= (a a
r-I r - 2

and defining relations: (1.2)

and aia i + 1ai = ai+ Ia i ai+ 1 ,for I ~ i ~ r - I,

a·a· = a·a.
I J J I

A .. at = atA ..
IJ IJ

i*Q - I Q
n 'n

,for Ii - jl ~ 2

, for t * i-I, i, j.

11. If Xi and xj have equal periods, then their inner

automorphisms are conjugate of each other'
Since the periods are equal, there is an au~o­
morphism

"I : Xi -+ xj

such that for each k, I < k < r,

Theorem 2.3

Let r be a Fuchsian group with signature (2.4). Then.

Aut+ r = T}v-1(~ La)'
i = I i

Lemma. 2.1.

* k *I(r)CP CT}V- I ( 1T L )CB
r i = I ai r

Proof:

If we denote the inner automorphisms

"I(X. "I-I (xk)x. -I)
I I

() ( -I) - -I"I x. xk"l x. - x.xkx.
I I J J

[I(xj )1(x
k

)·

Therefore, I(xj) = "I1(xih-1 .

Proofof Theorem 2.3.

By Zieschang's theorem, every I/> € Aut+ r is in­
~u~d bY.......~ € A{r) which satisfies (2.1.). Then
A(r) = I(r).v-I ( ~ L ) and Aut+ r =I(r). T}V-

I

i = I ai
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Stage 1:
Let rr be the

rand r rr = r/

1<
rr La). By Lemma 2.1. then we have the

i = I 1

result.

Our aim now is to find .the structure of these

k * *groups nv-1 ( rr L ), B , P . We will do this in
i = I a i r r

two stages.

Stage 2:

Let n: Aut+ r rr ~ Atlt+ r be the natural homomor-
I * I * -I k

phism with nCB ) = B ,n(p ) = P , n(711 v t rr
r r r r i=1

k *L )) = 71VI)) = 71V-1 (rr L ). We will first find B .
a i i = I ai r

P I ~ P / t' Therefore P I is generated by A..r r cen er r IJ'

I ~ i <j ~ r, with defining relations (1.2) and

Let K be the normal closure of [I (xr): I ~ i~ r)in

B; . We will now prove the following:

Rerruzrks 2.2.

Maclachlan, (1973), gives the presentation of B;. By

the same argument as Theorem 2.3., Aut+ r = B I
rr r

Corollary 2.3.

{~~ ,-...}
normal closure kf x I x2 ...xr in

. Let 711V-
1(rr La) be the

rr i = I i

automorphisms in rrr induced by V-Igroup of

Corollary: 2.1.

If all the periods are equal, then Aut+ r =
I. *

Br .

11. If all the periods are distinct, then Aut+ r
*=p
r

Theorem 2.5.

Then by Magnus's theorem, (Maclachlan, 1973

and Magnus 1934), ker 71 1 = center. Hence we

have:

Proof:

By Maclachlan & Harvey (1975) we have:

Theorem:: .4.
k k

71 v-Ie rr ~ )isisomorphictov-I
( rr La)mo-

I i = I a i i = I 1

B I /I(rrr) ~ Aut+ r rr)/I(frr)~M(O,r)~Aut+ffI(n
r

d ulo the center.

k
Hence we can find the presentation of 71 1v 1 ( rr

i = I

L ) by expressing I(-;I~" ...:>, which is the gene-
a· ;.

rat6r of the center by (1.7), in terms of the genera-

k
to rs V-I ( rr L ).

i = I a I

ill n *
1 Brr

\ /
/ 1);2

i
M(O, r)

Corollary 2.2.

B/ ~ Br/center. ThereforeB/ is generated by or
I ~ i ~ r - I, with defining relations (1.1) and

with ker 1/1 I = I(rrr)' ker 1/1 2 = I(n. So, n -I (ker 1/1 2)

= l(rrr)' Therefore ker n C I(frr ). Hence, ker DC K.

Clearly, K C ker n. Thus ker n = K proving our theo­
rem.

PERTANIKA VOL. 11 NO.1, 1988 119
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*The extra relations that we have to add in Br
are those of{I(xj); I .:;;; i .:;;; r} By remark 2.1, it

suffices to add only:

m 2 )mI(x l ) = (u l u2 ··· ur _ 2 ur _ Iur_2··· u2u I =

1.

perio ds are distinct, then Aut + r = P * is isomor-
. I r

phic to P modulo K, where K is the normal clo­
r m.

sureof{l(xi I): I':;;;i':;;;r,mii=mjforallii=j}

Examples
m.

1.r = <xl,x2,x3'x4Ixlx2x3x4=xi 1=1

Hence we have shown.
I':;;; i':;;; 4, m."* m. for i i= j >

1 J

Theorem 2.6

k
(rr ~ ) modulo K.
i = I Qi

If r is a Fuchsian group of genus zero with r equal
periods, m, then Aut+ r is generated by ui' I .:;;; i <
r - I, with defining relations:

A12A23AI3A34A24AI4A4SA3SA2SAIS = I

( mS
A4SA3SA2SAIS) =

(A A A A A -1 m 4453525 15 12A23A13A4S) =1

(A A -I m3
34 4SA3S A23A 13A4S) = I

(A23A34A24A4SA3SA2SAI2A3S-1 A4S- 1 A34
1

)

m2 m
= I (A23A34A24A4SA3SA2S) 1 = 1.

3. r = < xI ,x2,x3,x4,xS,x61 xI x2x3x4xSx6

m.
= xi 1 = 1. I':;;; i':;;; 6, m

i
i= m

j
for I i= j >.

+
Aut r is generated by Aij' I .:;;; i <j:O;;;; 4, with

defining relations (1.2) and

A12A23AJ3A34A24AI4 = I

m
4

_
(A34A24AI4) - 1

(A34A24AI4AI2A3/ )m3 = 1

(~3A34A24A4SA3SA2SAI2A3S -I A4S -I

A -I )m2 _ m l I
34 - I (A23A34A24A4SA3SA2S) .

2. r = < xI ,x2,x3 ,x4 ,xS J xI x2x3x4xS = x m l = I
I
m.

l':;;;i:O;;;;S,m.i=m.,forii=j> =x. 1= I
I J I

Aut+ r is generated by A-. I .:;;; i < j :0;;;; S, with
d f · . 1]'

e mmg relations (1.2) and

, Ii -jl ~ 2

, I .:;;; i ':;;;r-2

u.u. = u.u.
I J J 1

Remark 2.3.

Our problem of finding the presentation is reduced

to expressing {[(Xi mn+ I ): 0':;;; n':;;; k-I, Qn + I ~

i':;;;Qn+l}in terms of the generatorsofnlv-I
( i~ I

~Q.), which depend on the signature of r.
1

(u l u2 ··· ur _ l / = I

( 2 u u )m - Iu Iu2 ... ur_2u r-I ur _ 2 . .. 2 I -

k
We will next find 7/V-1(rr ~ ). Let Know

i = I Qi

Theorem 2.7.

If r is a Fuchsian group with signature (2.4.), then
k

Aut+ r = 7/V-1(rr ~Q ) is isomorphic to 7/1 V-I
i = I i

be the normal closure of{I(x
k

mn+ I ); u':;;; 7/':;;; k-I,

Qn + I .:;;; i':;;; Qn + i}-in r rr. By a similar argument to

(2.S), with the 'mapping class group' corresponding
k

to rr ~ , then ker n = K. Hence we have the fol-
i = I Qi

lowing.

Corollary 2.4.

If r is a Fuchsian group of genus zero and all the
Aut+ r is generated by A-., 1 .:;;; i < j .:;;; 6 with
defining relations (I .2) aid '

120 PERTANlKA VOL. II NO. 1,1988
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A 12A23A 13A34A24A 14A45A35A25A 15 A56

A46A36A26A16 = 1

m6(A56A46A36A26A16) = 1

(A56A46A36A26A16A12A23A13A34A24A14
m

A
56

- 1) 5 = 1

(A45A56A46A12-1 A13 -I A12A23A13A34A24

_I m 4 _
A

14
A

56
) - 1

(A34A45A35A56A46A36Ai~A23A12A4~ A5~
m

A4~) 3 =

Remarks 2.4.

brackets, that is the terms with periods, equal
to one, since they are either I(xi) or (I(x

i
-I ).

Then we reduce these relations to the simplified
form.

3.1. PM(O, 3) = 1.

(Trivial {orm remark 2.4.)

3.2
PM(O, 4) is generated by A .. , I « i <j « 4 with
defining relations (1.2) and 1] ,

A34A23Al3

A34A24Al4

A12A3~ = I

3.3
PM(O, 5) is generated by A.. 1 « i < J' « 5 withIJ' ,
defining relations (1 .2) and

II. If r is a triangle group with distinct periods,

then *

1. We are unable to find the general formulae for
m.

I(x. 1), since our technique is iterative. How­
1

ever, given a particular r, one can calculate
m.

I(X
i

1).

Aut+ r = P
3

I(r).

A45A34A24Al4

A45A35A25Al5

A12A23A13A4~

A34A45A35Ai~

A23A34A24A45A~5A25

3. PURE MAPPING CLASS GROUPS

The mapping class group can be looked upon as
the quotient group of the orientation-preserving
automorphisms, Aut+ r, of a Fuchsian group, r,
by its normal subgroup of inner automorphisms,
(Maclachulan and Harvey, 1975). Corresponding
to the Fuchsian group of genuz zero with r distinct
periods, we can get the pure mapping class group,
denoted by PM(O, r). So much has been said in the
past about the full mapping class groups, (Birman,
1974), but we cannot find much information
about the pure mapping class groups.

In this section, we will give the presentations
of PM(O, r), based on the calculations in the exam­
ples. The technique is to set the terms within the

3.4

PM(O, 6) is generated by Aij , 1 « i < j « 6, with
defining relations (1.2) and

A56A45A35A25A 15

AS6A46A36A26A 16

A12A23A 13 A34A24A14A5~

A A A A -I A-I -1
23 13 12 46 56 A45 = 1

A34A45A35A56A46A36Al~ =

A23A34A25A4SA35A25A56A46A36A26

PERTANIKA VOL. II NO.1, 1988 121
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Remarks 3.1.

If r is a Fuchsian group with signature (2.4), then

Aut+ r/I(f) is isomorphic to the mapping class

group corresponding to the symmetric group
k
1T ~ •

i = I Q j

{I(X j): Qn + 1 ~j~.Qn+l'O ~n ~k - I}

k
in terms of the generators of T'/IV-I (. 1T ~Q)' we

I = I I

can determine the presentation of this mapping

class group. This mapping class group lies in

between the pure mapping class group and the full

mapping class group.

4. SEIFERT FIBRE GROUPS

Let r be a Fuchsian group:

m.
r = <a I ' b I' ... , ag , bg' x I ' x2 ' ... , xr IXi I

I g
1T x. 1T [a.,b.)=I>

i=1 Ij=1 J J

Let G be a central extension, by r, of Z

l/J
_(z) :>-------')oG~l/J r~I(4.1)

(i) g = 0,r<2

(ii) g = O,r =3, I/m l + 11m2 + 11m3> 1.

(iii) [-2;0;(2,1),(2,1),(2,1),(2,1))

(iv) g = I,r= 1.

OtherWise, we call M large.

We summarize below a special case of Orlik s

theorem, [10), restricted to the case 0 l: EI = I
for all i.

Theorem 4.1.

Let M and M' be large 0 1 - Seifert manifolds. If
¢: G ' == TrI(M' ) """* G == TrI(M) is an isomorphism
., , 1 , ,

With z """* z, then g == g, r == r, m. == m .. ni = n
l
·,

I. I -1 I
(A == 0) for all i, and (j>(xi ) == Qix/1.Qi ' I ~ i ~ r,
where 1

1 2

(/11 J.12... /1/ is a permutation, mi == m/1i' Qi E G.

Corollary 4.1

Let M be a large 0 I - Seifert manifold with signa­

ture{ n; 0; (M I , n l ), (m 2, n 2), ... , (mr , nr}.

Then an automorphism A*:G """* G such that
A*(z) == z satisfies:

A*(Xi)=Q·X" Q":"l,I~i~r,
I "'i I

such that:

G=<al,bl'····,ag,bg,xl x ·x· zl, 2' .... , r'
m. n.

x. I Z I = I,
1

where

2

/1
2

r
/1 ) is a permutation,

r

r g n
Tr x. Tr [a., b.) = z ,

i= I I j = I J J

z~ x.,a.,b. >
I J J

(4.2)

m·==m" andQ.EG.
I ,... I

I

Proof

Set M' == M in Theorem 4.1. for g == 0.

where~ denotes commutativity.

In Orlik's notation, (1972), we restrict ourselves

to the case °1 : E· = I for all i. If for each, i, I ~ i
1

~ r (m. n.) are relatively prime positive integers
, l' 1

and °< n i < mi, then G = 1T 1(M), where M is a

Seifert manifold. We call G a Seifert fibre group.
We call the signature of Mas: {n; g; (m!, n l ),

(M 2 , n 2),· .. , {mr , n r }

We call M small if it satisfies one of the following:

We denote those automorphisms which satisfy

Corollary 4.1. by Aut+ G, which form a sub­

group of Aut G. We call the element A* E Aut+

G, a regular automorphism

Theorem 4.2

Suppose G and r are as (4.1) and (4.2), respective­
Iy, for g = 0. Then Aut+ G ~ Aut+ r.
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Proof
By Zieschang's theorem (1966) A € Aut+ r satisfies:

A(x.) = Q. x" Q.-l, I";;; i < r,
1 l"'i 1

where

( I 2. _. r
" ,,) is a permutation, m. = m" ' Q.€ r

III "'2'" "'r 1 "'i 1

Let 1/1: G ~ r. Then 1/1 induces 1/1*: Aut+ G ~ Aut+

r, 1/I*(A *) = A and kerC1/I*hrivial. Hence, Aut+ G
~Aut+ r

Corollary 4.2.

Out+ G = Aut+ GjI(G) "" Aut+ rjl(r)
"" Mapping class group of

a closed orientable
surface, XO' of genus
zero such that Xo =

1T I (r).

Proof:
Observe that leG) ~ Gj(z) ~ r ~ l(n and

.--.. + +rj1/I*(I(G)) = l~). Therefore, 1/1*: Aut G ~ Aut
l(n has ker 1/1* = leG). Hence the results follow.
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