CHARACTERIZATION OF METHICILLIN-RESISTANT
STAPHYLOCOCCUS AUREUS ISOLATED FROM CATS AND DOGS

By

JACKLYN NG WEI SZE

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia,
in Fulfilment of the Requirements for the Degree of Master of Science

January 2006
Specially dedicated to my beloved family,
my late grandmother, Han Guang,
Cardio & Lucky
Abstract of thesis presented to the Senate of Universiti Putra Malaysia in partial fulfilment of the requirement for the degree of Master of Science

CHARACTERIZATION OF METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS ISOLATED FROM CATS AND DOGS

By

JACKLYN NG WEI SZE

January 2006

Supervisor : Zunita Zakaria, PhD
Faculty : Veterinary Medicine

Globalization has entailed a massive increase in trade and human mobility facilitating the rapid spread of infectious agents, including those that are drug resistant. A particularly serious threat to human health is posed by methicillin-resistant staphylococcal strains which have acquired molecular mechanisms to evade the β-lactam antibiotics (BLAs). The number of methicillin-resistant Staphylococcus aureus (MRSA) infection in humans is increasing, thus it seems likely that MRSA infection in animals is becoming more frequent too. This study addressed the significance of MRSA among cats and dogs, animal species that are in close proximity to humans. The first part of the study was designed to characterize the microbiological and biochemical properties of S. aureus and MRSA using both conventional and molecular methods. Samples comprising nasal and skin swabs collected from hospitalized and homeless cats and dogs at the University Veterinary Hospital, Universiti Putra Malaysia, (UVH-UPM) and animal shelter operated by the Society for the Prevention of Cruelty to Animals (SPCA) respectively between May to October 2004. The isolation and identification of MRSA using both the conventional and molecular methods in this study were found to be consistent and
rreliable. Conventional methods such as differential staining, biochemical tests, Slidex Staph Plus Kit (latex agglutination test) and selective media Mannitol Salt Agar (MSA) and Oxacillin Resistance Screening Agar Base (ORSAB) were used to detect the MRSA from cats and dogs. A total of seven (1.92%) MRSA out of 364 samples were successfully isolated from the animal subjects. These MRSA isolates were also found to be resistant to at least four antimicrobial agents. The second part of the study investigated the microbial resistance of the MRSA using molecular techniques. Polymerase Chain Reaction using specific primers amplified a 533-bp fragment of the \textit{mec}\textsubscript{A} gene. The partial \textit{mec}\textsubscript{A} gene sequences exhibited >97% amino acid similarities among the seven local MRSA isolates and the amino acid were highly conserved, and categorized in five different groups. Plasmid analysis indicated the presence of at least three plasmid bands in the seven MRSA isolates. In the last part of the study, the bacterial acid methyl esters (BAMEs) profile of the \textit{S. aureus} and MRSA was characterized in order to detect probable differences between isolates and across host specificities. The branched chain 3-hydroxy dodecanoic, stearic and eicosaenoic acids were the principal fatty acids in both \textit{S. aureus} and MRSA. However, lauric acid was unique to \textit{S. aureus} only, whereas nonanoic acids were found more frequently among MRSA. Gradual changes in the fatty acid composition from \textit{S. aureus} to animal MRSA and finally to human MRSA further reaffirmed the possibility of animal-human MRSA cross-transmissions. To our knowledge, this is the first report on the isolation of MRSA in animals and the use of molecular techniques to confirm the identity of the \textit{mec}\textsubscript{A} gene from animals in Malaysia. The findings of the study would enable the formulation of suitable measures to control MRSA.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai sebahagian keperluan untuk ijazah Master Sains

PENCIRIAN STAPHYLOCOCCUS AUREUS TAHAN METISILIN YANG DIASINGKAN DARIPADA KUCING DAN ANJING

Oleh

JACKLYN NG WEI SZE

Januari 2006

Pengerusi : Zunita Zakaria, PhD
Fakulti : Perubatan Veterinar

Globalisasi telah menyebabkan suatu gejala yang luas dan pergerakan manusia mempermudahkan lagi sebaran penyakit yang berjangkit secara mendadak, termasuklah sebaran agen jangkitan yang berentan terhadap ubat-ubatan tertentu. Suatu ancaman tertentu yang serius, terhadap kesehatan manusia adalah strain Staphylococcus yang berentan terhadap metisilin yang memerlukan mekanisme molekular untuk menembusi antibiotik β-lactam (BLAs). Bilangan jangkitan “methicillin-resistant Staphylococcus aureus” (MRSA) terhadap manusia kian meningkat, maka, ianya amat besar kemungkinan bahawa jangkitan MRSA pada haiwan juga akan menjadi kian kerap. Kajian ini menumpu kepada keertian MRSA di antara kucing dan anjing disebabkan haiwan ini berhubungan rapat dengan manusia. Bahagian pertama dalam kajian ini adalah menggunakan kaedah-kaedah secara konvensional dan molekular untuk menciri Staphylococcus aureus dan MRSA. Sampel diambil dari bahagian rongga hidung dan kulit daripada kucing dan anjing di Hospital Veterinar Universiti, UVH dan tempat teduhan haiwan SPCA, dari Mei hingga Oktober 2004. Pemencilan dan pengenalpastian MRSA yang menggunakan kaedah konvensional dan molekular adalah konsisten dan boleh
diharap. Kaedah konvensional seperti pewarnaan gram, ujian-ujian biokimia, SlideX Staph Plus Kit (ujian agglutinasi lateks), serta penggunaan media yang selektif seperti Mannitol Salt Agar (MSA) and Oxacillin Resistance Screening Agar Base (ORSAB) digunakan untuk menentukan MRSA. Tujuh (1.92%) MRSA daripada 364 sampel berjaya dipencilkan daripada kucing dan anjing. MRSA ini juga didapati berentang terhadap sekurang-kurangnya empat agen antimikrobial. Bahagian kedua dalam kajian ini mengkaji kerentanan mikrobial MRSA dengan menggunakan kaedah-kaedah molekular. Amplifikasi PCR dengan menggunakan primer spesifik telah menghasilkan frakmen 533-bp dari gen mec A. Sekuen sebahagian gen tersebut menunjukkan >97% persamaan asid amino antara kesemua isolat MRSA, dan asid amino didapati sangat terpelihara serta dikategorikan dalam lima kumpulan. Analisis plasmid membuktikan kehadiran sekurang-kurangnya tiga jalur untuk tujuh isolat MRSA. Bahagian terakhir kajian ini menggunakan asid methyl ester bakteria (BAMEs) untuk menentukan perbezaan antara isolat dan hos secara spesifik S. aureus dan MRSA. Rantai bercabang asid 3-hidroksi dodekanoik, asid stearik dan asid eikosaenoik merupakan asid lemak major untuk S. aureus dan MRSA. Namun begitu, asid laurik hanya didapati dan adalah unik untuk S. aureus sahaja, manakala asid nonanoik didapati lebih banyak untuk MRSA. Perubahan secara gradual dalam komposisi asid lemak S. aureus kepada MRSA dari haiwan dan seterusnya kepada manusia mengesahkan sebaran penyakit yang berkemungkinan berlaku antara haiwan dengan manusia. Untuk pengetahuan kita, ini merupakan berita pertama tentang pencirian MRSA daripada haiwan dan penggunaan kaedah molekular untuk mengenal pasti identiti gen mec A di Malaysia. Keputusan yang diperolehi daripada kajian ini akan memudahkan cara pencegahan MRSA.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my dedicated supervisor, Dr. Zunita Zakaria, for her endless kind support, cooperative work, guidance and patience throughout the entire period of the research.

Special thanks to my co-supervisors, Dr. Goh Yong Meng and Associate Professor Dr. Raha Abdul Rahim, for their ceaseless assistance and guidance in my experiments and thesis writing; to Professor Abdul Rani Bahaman for his support, motivation and optimistic advices; to Dr. Salmah for her generosity in giving a few human MRSA isolates for comparison in this study, to Mr. Hajaraih Salamat, Mr. Jefri Norsidin and Miss Latifah Hanan for their invaluable help and guidance during microbial work; and to my seniors Dr. Ani Yardi, Dr. Mahadevan and Dr. Sit Mei Lin for their kindness and volunteer in teaching and advice during sampling and my laboratory work.

Not forgetting to mention my fellow course mates, Maureen, Dzarifah, Sabah, Choy, Teh, and others, for their time and effort in sharing information with me; my friends, Han Guang, Associate Professor Dr. Rusea Go, Associate Professor Dr. Abdul Rahim, Hafandi and Pui Wah, for their generosity and helpfulness; and last but not least, to my whole extended family for being there to give me the strength and support throughout the entire research. Above all, thank GOD for all his blessings and miracles that helped me made it all the way to complete this theses. AMEN.
I certify that an Examination Committee has met on the 3rd of April 2006 to conduct the final examination of Jacklyn Ng Wei Sze on her Master of Science thesis entitled “Characterization of Methicillin-Resistant \textit{Staphylococcus aureus} Isolated From Cats and Dogs” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

\textbf{Dato’ Sheikh Omar Abdul Rahman, PhD}\nProfessor\nFaculty of Veterinary Medicine\nUniversiti Putra Malaysia\n(Chairman)

\textbf{Abdul Rani Bahaman, PhD}\nProfessor\nFaculty of Veterinary Medicine\nUniversiti Putra Malaysia\n(Internal Examiner)

\textbf{Saleha Abdul Aziz, PhD}\nAssociate Professor\nFaculty of Veterinary Medicine\nUniversiti Putra Malaysia\n(Internal Examiner)

\textbf{Kasing Apun, PhD}\nProfessor\nFaculty of Resource Science and Technology\nUniversiti Malaysia Sarawak\n(External Examiner)

\textbf{HASANAH MOHD. GHAZALI, PhD}\nProfessor/Deputy Dean\nSchool of Graduate Studies\nUniversiti Putra Malaysia

Date:
This thesis submitted to the Senate of University Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Master of Science. The members of the Supervisory Committee are as follows:

Zunita Zakaria, PhD
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Chairman)

Goh Yong Meng, PhD
Lecturer
Faculty of Veterinary Medicine
Universiti Putra Malaysia
(Member)

Raha Abdul Rahim, PhD
Associate Professor
Faculty of Biotechnology and Biomolecular Sciences
Universiti Putra Malaysia
(Member)

AINI IDERIS, PhD
Professor/Dean
School of Graduate Studies
Universiti Putra Malaysia
(Date:)

ix
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

JACKLYN NG WEI SZE

Date: 7th January 2006
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>vii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vi</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>viii</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiv</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xv</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xvii</td>
</tr>
</tbody>
</table>

CHAPTER

I INTRODUCTION

II LITERATURE REVIEW

- Characteristics of *Staphylococcus*
 - Taxonomy 5
 - Morphology and identification 7
 - Virulent factors 8
- Importance of *Staphylococcus aureus*
 - Significance in animal health 9
 - Significance in public health 13
- Development of antibiotic resistance in microorganisms 15
- Development of antibiotic resistance in *Staphylococcus aureus* 22
- Emergence of Methicillin-Resistant *Staphylococcus aureus* 24
 - The rise of MRSA 24
 - Importance and epidemiology of MRSA 25
 - Transfer of MRSA from animals to man 28
- Laboratory diagnosis for MRSA 29
 - Conventional biochemical tests and selective media 29
 - API Staph identification system and Slidex Staph Plus 30
 - Antibiotic susceptibility test 32
 - Molecular techniques 34
 - Bacterial acid methyl esters (BAMEs) 36
- Control and prevention of MRSA 39

III ISOLATION AND IDENTIFICATION OF METHICILLIN-RESISTANT *STAPHYLOCOCCUS AUREUS* (MRSA) 42

- Introduction 42
- Materials and Methods 44
 - Sampling collection procedures 44
 - Culture procedures 44
 - Biochemical tests for identifying *Staphylococci* 45
 - Selective and differential medium for isolating staphylococci 48
Confirmation of the mec A gene using Polymerase Chain Reaction (PCR) 49
Results 52
Occurrence rates, morphology and biochemical characteristics of Staphylococcus aureus 52
Culture characteristics on selective media 56
Detection of the mec A gene by Polymerase Chain Reaction (PCR) 58
Discussion 58
Conclusion 63

IV ANTIBIOTIC SUSCEPTIBILITY TESTING AND PLASMID PROFILING OF STAPHYLOCOCCUS AUREUS 64
Introduction 64
Materials and Methods
Bacterial isolates 66
McFarland standardization 66
Antibiotic susceptibility test 67
Agar dilution Minimum Inhibitory Concentration (MIC) Testing 68
Plasmid profiling analysis (Small-scale preparations of plasmid DNA) 68
Results 71
Antibiotic susceptibility testing 71
Agar dilution Minimum Inhibitory Concentration (MIC) testing 74
Plasmid profiling analysis 74
Discussion 76
Conclusion 79

V SEQUENCING AND ANALYSIS OF THE MEC A GENE 80
Introduction 80
Materials and Methods
PCR product of mec A gene amplification 82
DNA Purification by centrifugation 82
Cloning of the purified PCR product 84
Ligation using 2X rapid ligation buffer 84
Transformation into JM109 competent cells 84
Plasmid extraction (Miniprep) 85
Restriction Endonuclease Digestion of EcoRI 86
DNA Sequencing of the partial mec A gene 87
Results 88
Cloning of the purified PCR product 88
DNA Sequencing Analysis of the partial mec A gene 89
Discussion 97
Conclusion 100