INCREASING THE YIELD OF UPLAND RICE IN IDLE LAND THROUGH NUTRIENT AND WEED MANAGEMENT

By

HARTINEE BINTI ABBAS

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirement for the Degree of Master of Agricultural Science

March 2006

"DEDICATION"

To beloved Abah and Mak

Tn. Haji Abbas bin Abdullah Pn. Hajjah Zaini binti Ismail, P.J.K Abstract of thesis presented to the Senate of Universiti Putra Malaysia in fulfilment of the requirement for the degree of Master of Agricultural Science

INCREASING THE YIELD OF UPLAND RICE IN IDLE LAND THROUGH NUTRIENT AND WEED MANAGEMENT

By

HARTINEE BINTI ABBAS

March 2006

Chairman: Associate Professor Mohamed Hanafi Musa, PhD

Faculty: Agriculture

Recently, demand for high quality and fragrant rice has increased markedly due to affluent and health conscious consumers in Malaysia. Research on upland rice had been neglected because of low yield, despite the many good characteristics of upland rice, such as fragrance and long grains size. Furthermore, it has the advantage of cultivation on dry land without accumulation of water. Therefore, a large track of idle land in Malaysia can be developed for upland rice cultivation. This study involves the documentation of upland rice that produce high grain yield and the soil physico-chemical characteristics of idle land. A glasshouse experiment was conducted using Bukit Tuku soil (Aquic Kandiudult) and three selected upland rice varieties (Ageh, Kendinga and Strao) for determination of the optimum levels of N, P, and K fertilizer based on biomass and nutrient partitioning from the earlier survey. The experiment was carried out independently using five levels each of N, P and K with three replicates and arranged in a complete randomized design (CRD). A field trial was conducted on an idle land located in Kampung Kubang Bemban, Kuala Nerang, Kedah to

evaluate the weed management practices for selected rice varieties and levels of nutrients obtained in the glasshouse study. In the field survey, 35 different upland rice seeds were collected from 17 upland rice fields in Malaysia. The plant and panicle numbers and yields of upland rice varieties ranges from 10 to 18 plants hill⁻¹, 7 to 14 panicles hill⁻¹ and 21 to 50 g yields hill⁻¹, respectively. Both upland rice and forest (as a control) soils were acidic, low in N content and CEC at 0-20 and 20-40 cm depths. Higher Fe content was observed in the soils; a major limitation for upland rice growth. The nutrient contents of idle land were low and higher in Al content. In the glasshouse trial, the yields of upland rice varieties ranged from 7 to 22 g hill⁻¹ (Ageh), 6 to 18 g hill⁻¹ (Kendinga) and 9 to 22 g hill⁻¹ (Strao) depending on fertilizer types and levels. The optimum fertilizer rate for each variety was determined using different response models. Quadratic (QR) and linear (LR) response models tend to overestimate the fertilizer rates compared to LR and QR with plateau (P) response models. The fertilizer rates were 112 kg N ha⁻¹, 78 kg P₂O₅ ha⁻¹ and 158 kg K₂O ha⁻¹ for Ageh (QRP); 138 kg N ha⁻¹ (LRP), 87 kg P_2O_5 ha⁻¹ (QR), 119 kg K_2O ha⁻¹ (QRP) for Kendinga; and 125 kg N ha⁻¹ (QR), 85 kg P_2O_5 ha⁻¹ (LRP) and 127 kg K_2O ha⁻¹ (LR) for Strao. In the field, there was heavy weed infestation in the unweeded (control) plot. Dazomet was the most effective for controlling weeds for up to 5 months after planting. Due to severe water deficit during this experiment, only estimated yield of Strao rice variety were recorded. Dazomet application at 15 x 15 cm planting distance showed higher yields (7.7 tonnes ha⁻¹) compared to 30 x 30 cm planting distance $(2.5 \text{ tonnes ha}^{-1})$. Based on this study, the upland rice can be grown successfully on low land areas, such as on idle land in Peninsular Malaysia.

Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Master Sains Pertanian

MENINGKATKAN HASIL PADI HUMA DI TANAH TERBIAR MELALUI PENGURUSAN NUTRIEN DAN RUMPAI

Oleh

HARTINEE BINTI ABBAS

Mac 2006

Pengerusi: Profesor Madya Mohamed Hanafi Musa, PhD

Fakulti: Pertanian

Kini, permintaan terhadap beras berkualiti tinggi dan beraroma semakin bertambah disebabkan peningkatan taraf hidup dan kesedaran terhadap kepentingan kesihatan di kalangan rakyat Malaysia. Penyelidikan padi huma sering diabaikan kerana hasilnya rendah walaupun padi huma mempunyai ciri yang baik, seperti beraroma dan saiz bijirin yang panjang. Malahan, ia boleh ditanam di tanah yang tidak ditakungi air. Oleh itu, jumlah tanah terbiar yang banyak di Malaysia boleh diusahakan untuk penanaman padi huma. Kajian ini merangkumi dokumentasi varieti padi huma berhasil tinggi dan ciri fizik dan kimia tanah terbiar. Kajian rumah kaca melibatkan penggunaan tanah Bukit Tuku (Aquic Kandiudult) dan tiga varieti padi huma (Ageh, Kendinga dan Strao) untuk menentukan kadar optimum baja N, P dan K berdasarkan kepada biomas dan pemecahan nutrien yang diperolehi dari tinjauan awal. Ia termasuk lima kadar baja N, P, dan K dengan tiga replikasi setiap satu dan disusun mengikut rekabentuk rawak penuh (CRD). Kajian lapangan dijalankan di kawasan tanah terbiar Kampung Kubang Bemban, Kuala Nerang, Kedah untuk menilai pengurusan kawalan rumpai bagi varieti padi huma terpilih dan kadar baja dari kajian rumah kaca. Melalui tinjauan lapangan, sebanyak 35 benih padi huma yang berbeza telah berjaya dikumpulkan dari 17 lokasi di Malaysia. Bilangan pokok, tangkai dan hasil padi huma adalah di antara 10 hingga 18 pokok serumpun⁻¹, 7 hingga 14 tangkai serumpun⁻¹ dan 21 hingga 50 g hasil serumpun⁻¹. Tanah padi huma dan hutan (kawalan) adalah berasid, rendah kandungan N, dan KPK pada kedalaman 0-20 dan 20-40 cm. Kandungan Fe tanah yang tinggi merupakan faktor penghad terhadap pertumbuhan padi huma. Kandungan nutrien tanah terbiar adalah rendah kecuali kandungan Al. Hasil padi huma adalah di antara 7 hingga 22 (Ageh), 6 hingga 18 (Kendinga) dan 9 hingga 22 g serumpun⁻¹ (Strao) mengikut jenis dan kadar baja. Kadar optima baja setiap varieti ditentukan dengan menggunakan beberapa model tindakbalas. Model tindakbalas kuadratik (OR) dan linear (LR) cenderung memberi anggaran kadar baja yang melampau jika dibandingkan dengan model tindakbalas LR dan kuadratik(QR) plateau (P). Kadar baja untuk varieti Ageh, Kendinga dan Strao ialah 112 kg N ha⁻¹, 78 kg P₂O₅ ha⁻¹ dan 158 kg K₂O ha⁻¹ (QRP); 138 kg N ha⁻¹ (LRP), 87 kg P₂O₅ ha⁻¹ (QR), 119 kg K₂O ha⁻¹ (QRP); dan 125 kg N ha⁻¹ (QR), 85 kg P₂O₅ ha⁻¹ (LRP) dan 127 kg K_2O ha⁻¹ (LR). Kajian pengurusan rumpai di ladang mendapati bilangan rumpai di petak kawalan (tidak merumpai) adalah tinggi. Dazomet di dapati paling efektif bagi pengawalan rumpai sehingga 5 bulan tempoh penanaman. Kemarau semasa kajian ini dijalankan menyebabkan hanya anggaran hasil varieti Strao direkodkan. Penggunaan dazomet pada jarak 15 x 15 cm menunjukkan hasil yang tinggi (7.7 tan sehektar) dibandingkan dengan jarak 30 x 30 cm (2.5 tan sehektar). Berdasarkan kajian ini, padi huma boleh ditanam dengan jayanya di kawasan dataran tanah rendah, seperti tanah terbiar di Semenanjung Malaysia.

ACKNOWLEDGEMENT

In the name of Allah, the Most Gracious, the Most Merciful

Praise to the Allah Almighty for His blessings, which enabled the author to complete this thesis. The author wishes to express her deeply appreciation to Assoc. Prof. Dr Mohamed Hanafi Musa the Chairman of the Supervisory Committee for his understanding, invaluable guidance, constructive criticisms and commitment that went beyond the bounds of duty throughout this study. Sincere thanks are also due to the members of the Advisory Committee, Assoc. Prof Dr. Mahmud Tengku Muda Mohamed and Dr. Abdul Shukor Juraimi for their advice, and comments that improved the usefulness of this thesis.

The financial supports of Ministry of Science, Technology and Innovation through the Intensification of Research in Priority Areas (IRPA) and providing National Science Fellowship (NSF) are acknowledged. The author wishes to express her most sincere thanks for this financial assistance, without which this study cannot be completed.

It is pleasure of the author to thank all the staffs of Land Management Department, Faculty of Agriculture, UPM, staffs of Department of Agriculture Kedah, Sabah and Sarawak, MARDI and MPOB for their diverse cooperation, guidance and providing the necessary facilities throughout the period of the study. Special appreciation goes to my beloved parents Tn. Haji Abbas bin Abdullah and Pn. Hajjah Zaini binti Ismail, my brother and his wife (Mohd Hafidzi & Azlin) and my sisters (Hasnah, Nurhanis and Nursalwati) for their blessing, love, sacrifices and encouragement which is invaluable to me.

Last but not least, I would like to thank my friends for their moral supports and help throughout the sweet and hard moments, may Allah bless all of you. I certify that an Examination Committee has met on 28th March 2006 to conduct the final examination of Hartinee Binti Abbas on her Master of Agricultural Science thesis entitle "Increasing the Yield of Upland Rice in Idle Land through Nutrient and Weed Management" in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

Aminuddin Hussin, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Syed Omar Syed Rastan, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Uma Rani Sinniah, PhD Lecturer

Faculty of Agriculture Universiti Putra Malaysia (Internal Examiner)

Othman Omar, PhD

Research Officer MARDI, Seberang Perai (External Examiner)

HASANAH MOHD GHAZALI, PhD

Professor/ Deputy Dean School of Graduate Studies Universiti Putra Malaysia

Date:

This thesis submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the Master degree. The members of the Supervisory Committee are as follows:

Mohamed Hanafi Musa, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Chairman)

Mahmud Tengku Muda Mohamed, PhD

Associate Professor Faculty of Agriculture Universiti Putra Malaysia (Member)

Abdul Shukor Juraimi, PhD

Lecturer Faculty of Agriculture Universiti Putra Malaysia (Member)

AINI IDERIS, PhD Professor/ Dean School of Graduate Studies Universiti Putra Malaysia

Date:

DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

HARTINEE BINTI ABBAS

Date:

TABLE OF CONTENT

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	V
ACKNOWLEDGEMENTS	vii
APPROVAL	ix
DECLARATION	xi
LIST OF TABLES	XV
LIST OF FIGURES	xviii

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE REVIEW	
	Current Status of Idle Land	5
	Current Status of Upland Rice	6
	Upland Rice Cultivation System	6
	Recommended Upland Rice Varieties	7
	Upland Rice Characteristics	7
	Rice Nutrient Requirement	8
	Constraints in Upland Rice Production	10
	Physical	10
	Chemical	11
	Biological	11
	Effect of Fire on Nutrient Availability under Slash and Burn	
	Technique	12
	Soil pH	13
	Nitrogen	14
	Phosphorus	14
	Potassium, Calcium and Magnesium	15
	Content of Ash	15
	Nutrient Leaching Rates	16
	Erosion	16
	Weed	17
	Weed Management Practices	18
	Weed Control Methods	18
	Mechanical and Cultural Weed Control	19
	Chemical Weed Control	22
	Type of Herbicide	22
	Summary	26
ш	DOCUMENTATION OF SELECTED UPLAND	RICE

IIIDOCUMENTATIONOFSELECTEDUPLANDRICEVARIETIES AND CHARACTERIZATION OF IDLE LANDIntroduction28Objective29

Materials and Methods	30
Location Coordinates	30
Location of Selected Upland Rice Cultivations	30
Location of Selected Idle Land	30
Field Survey of Upland Rice	30
Soil Sampling	31
Plant Sampling	34
Agronomic Parameters	34
Soil and Plant Analysis	34
Statistical Analysis	37
Result and Discussion	37
Survey on Upland Rice Cultivation	37
Current Status	37
Field Location	37
Cultural Practices	38
Varieties	41
Planting Season	42
Rice Yield	44
Major Constrains in Upland Rice Cultivation	45
Potential	45
Survey of Selected Idle Land for Upland Rice Cultivation	46
Idle Land	46
Physical and Chemical Characteristics of the Soil	46
Upland Rice Soil	46
Forest Soil	54
Soil Physico-Chemical Characteristics under Upland Rice	
and under Forest	59
Nutritional Aspects of Bukit Tuku Idle Land Soil	65
Agronomic Characteristics of Upland Rice	68
Number of Tillers	68
Number of Panicles	68
Empty Grains	68
Grain Yield	70
Grain Yield per Panicle	70
Dry Matter Partitioning	70
Nutrient Partitioning	73
Nutrient Uptake	76
Conclusions	78

IV	NITROGEN,	PHOSPHORUS	AND	POTASSIUM	
	REQUIREMEN	TS OF AGEH, KEN	DINGA AND	STRAO RICE	
	VARIETY GRO	WN ON BUKIT TUK	KU SOIL		
	Introduction			80	
	Objective			83	
	Materials and Me	ethods		83	
	Exper	imental Location		83	
	Soil P	reparation		83	

Seed Preparation	83
Crop Management	84
Experimental Units	84
Experimental Design and Treatments	84
Plant Sampling	85
Plant Analysis	85
Agronomic Parameters	85
Statistical Analysis	86
Result and Discussion	87
Agronomic Data	87
Nutrient Uptake of Three Upland Rice Varieties	95
Apparent Recovery of Fertilizer	98
Optimum Rates of Nitrogen, Phosphorus	
and Potassium Fertilization	100
Predicted Yields of Three Upland Rice Varieties	102
Conclusions	105

V EVALUATION OF WEED MANAGEMENT PRACTICES ON PERFORMANCE OF STRAO RICE VARIETY CULTIVATED ON BUKIT TUKU SOILS

	Introduction	107	
	Objective	109	
	Materials and Methods	109	
	Location	109	
	Crop Management	111	
	Land Preparation	111	
	Seed Preparation	111	
	Experimental Design	111	
	Fertilizer Application	112	
	Weed Control	112	
	Weed Sampling	112	
	Plant Sampling	113	
	Plant Analysis	113	
	Agronomic Parameters	113	
	Statistical Analysis	113	
	Results and Discussions	114	
	Major Weed Species	114	
	Weed Density	114	
	Dry Matter Weight of Weed	117	
	Nutrient Uptake	118	
	Agronomic Data	124	
	Conclusions	128	
VI	GENERAL CONCLUSIONS AND RECOMMENDATIONS	129	
REFERENCES		131	
APP	APPENDICES		

	1 7 7
BIODATA OF THE AUTHOR	149