DETECTION AND REDUCTION OF AFLATOXIN AND OCHRATOXIN A IN BLACK AND WHITE PEPPER

MARYAM JALILI

FSTM 2010 15
DETECTION AND REDUCTION OF AFLATOXIN AND OCHRATOXIN A IN BLACK AND WHITE PEPPER

By

MARYAM JALILI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in Fulfilment of the Requirements for the Degree of Doctor of Philosophy

October 2010
Specially dedicated:

To the memory of my late father, my beloved mother,
My brothers and my sisters
DETECTION AND REDUCTION OF AFLATOXINS AND OCHRATOXIN A IN BLACK AND WHITE PEPPERS

By

MARYAM JALILI

October 2010

Chairman : Professor Jinap Selamat, PhD
Faculty : Food Science and Technology

Despite the serious side effects of aflatoxins (AFs) and ochratoxin A (OTA) on human health, there is no published method for the reduction of AFs and OTA in black and white peppers. In light of this, this thesis describes methods that can be used to reduce AFs and OTA in black and white peppers. The separation and quantification of OTA by high performance liquid chromatography (HPLC) in black and white peppers was optimized. The influence of three variables: type of solvent, solvent-volume-to-sample-size (v/w), and amount of sodium chloride (NaCl) (g) on recovery of OTA was evaluated. The response surface methodology (RSM) was applied to determine the optimum amount of NaCl and solvent-volume-to-sample-size on the extraction of OTA from black and white peppers. This optimized method proved to be reliable with recovery values ranging from 94.3 to 102.0%. In order to assess occurrence of AFs and OTA in pepper
commercialized in Malaysia, samples of black and white pepper were randomly collected from supermarkets and wholesales located in Peninsular Malaysia. Results showed that 58.3 and 67.5% of samples were contaminated with AFs and OTA, with concentrations ranging from 0.1-25.8 and 0.30-33.0 ng/g, respectively. In order to reduce AFs and OTA in black and white pepper, a method was established by using gamma ray at doses within the range 5 to 30 kGy at 12 and 18% pepper moisture contents. Results showed that the method could not completely reduce OTA and AFs even at dose of 30 kGy and 18% moisture content. The second method proposed applied chemical compounds including acids, alkalis, salts and oxidizing agents for reduction of AFs and OTA. The highest reduction (41.9 – 57.3%) was obtained by using alkaline compounds. This study also optimized a method for reducing AFs and OTA in white pepper. The RSM was used to evaluate the effect of four variables, i.e., time (20-60 min), temperature (30-70 ºC), calcium hydroxide (0-1%) and hydrogen peroxide (1-3%), on reducing AFs and OTA during soaking. A treatment time of 57.8 min, temperature of 62 ºC, calcium hydroxide concentration of 0.6% (w/v), and hydrogen peroxide concentration of 2.8% (v/v) were found to be the optimum conditions for achieving the highest value of mycotoxin reduction and the best value for color. Maximum reduction at the optimum conditions ranged from 70.7 for AFB2 to 100% for AFG1, respectively. Since hydrogen peroxide caused damage to the surfaces of black pepper, this method was not applicable for black pepper. Therefore, the effect of sodium hydrosulfite at different concentrations (0.25, 0.5, 1, 1.5 and 2%) during boiling and sterilization was investigated. The boiling was done at 100 ºC and atmospheric pressure for 30 min while sterilization
was done under high pressure (1.5 bar) and 121 °C for 15 min. The maximum reductions were obtained by applying sterilization at 2% of Na₂S₂O₄ and corresponded to 96.0, 96.1, 77.7, 100% and 100% for OTA, AFB₁, AFB₂, AFG₁ and AFG₂, respectively. By applying these methods to black and white peppers, more than 95% reduction of OTA and the aflatoxins B₁, and G₁, which are the most dangerous mycotoxins, was obtained.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PENENTUAN DAN PENGURANGAN AFLATOKSIN DAN OCHRATOKSIN A DALAM LADA HITAM DAN PUTIH

Oleh

MARYAM JALILI

Oktober 2010

Pengerusi: Profesor Jinap Selamat, PhD

Fakulti: Sains Makanan dan Teknologi

Walaupun terdapat kesan sampingan yang serius dari aflatoksin (AF₈) dan ochratoxin A (OTA) pada kesihatan manusia, tidak ada kaedah yang diterbitkan untuk pengurangan AF₈ dan OTA pada lada hitam dan putih. Oleh itu, tesis ini menjelaskan kaedah yang boleh digunakan untuk mengurangkan AF₈ dan OTA pada lada hitam dan putih. Pemisahan dan kuantifikasi OTA dengan kromatografi cecair berprestasi tinggi (KCKT) pada lada hitam dan putih telah dioptimumkan.

Pengaruh dari tiga pembolehubah: jenis pelarut, isipadu pelarut terhadap saiz sampel (v/w), dan jumlah natrium klorida (NaCl) (g) atas hasil dapatan semula OTA dinilai. Kaedah respon permukaan (RSM) diaplikasikan untuk menentukan jumlah optimum NaCl dan isipadu pelarut terhadap saiz sampel pada pengekstrakan OTA dari lada hitam dan putih. Kaedah optimum ini terbukti boleh dipercayai dengan nilai hasil dapatan semula dalam linkungan 94.3-102.0%. Untuk menguji kehadiran AF₈ dan OTA pada tanaman lada komersial di Malaysia,
sampel lada hitam dan putih diambil secara rawak dari pasaraya dan pasar borong yang terletak di Semenanjung Malaysia. Keputusan kajian menunjukkan bahawa 58.3 dan 80% dari sampel yang telah tercemar dengan AF₅ dan OTA, dengan kepekatan dalam linkungan 0.1-25.8 dan 0.30-33.0 ng/g, masing-masing. Untuk mengurangkan AF₅ dan OTA dalam lada hitam dan putih, suatu kaedah telah dibangunkan dengan menggunakan sinar gamma pada dos dalam linkungan 5 hingga 30 kGy pada kandungan air sebanyak 12 dan 18%. Keputusan kajian menunjukkan bahawa kaedah tersebut tidak dapat mengurangkan OTA dan AF₅ sepenuhnya bahkan pada dos 30 kGy dan kandungan air sebanyak 18%. Kaedah kedua yang dicadangkan telah menggunakan sebatian kimia termasuk asid, alkali, garam dan agen pengoksidaan untuk mengurangkan AF₅ dan OTA. Penurunan tertinggi (41.9-57.3%) diperolehi dengan menggunakan sebatian beralkali. Penyelidikan ini juga mengoptimumkan suatu kaedah untuk mengurangkan AF₅ dan OTA dalam lada putih. RSM juga digunakan untuk menilai kesan empat pembolehubah, iaitu, masa (20-60 minit), suhu (30-70 ºC), kalsium hidroksida (0-1%) dan hidrogen peroksida (1-3%), dalam mengurangkan AF₅ dan OTA selama perendaman. Masa rawatan 57.8 minit, suhu 62 ºC, kepekatan kalsium hidroksida 0.6% (b/v), dan kepekatan hidrogen peroksida sebanyak 2.8% (v/v) didapatkan sebagai keadaan optimum untuk mencapai nilai tertinggi penurunan mikotoksin dan nilai terbaik untuk warna. pengurangan maksimum pada keadaan optimum adalah antara 70.7 untuk AFB₂ hingga 100% untuk AFG₁, masing-masing. Sejak hydrogen peroksida menyebabkan kerosakan pada permukaan lada hitam, kaedah ini tidak boleh digunakan untuk lada hitam. Oleh kerana itu, pengaruh natrium hidrosulfit pada kepekatan yang berbeza (0.25, 0.5, 1, 1.5 dan 2%) semasa
perebusan dan sterilisasi telah diteliti. Perebusan tersebut telah dijalankan pada 100 °C dan tekanan atmosfera selama 30 minit manakala sterilisasi dilakukan dibawah tekanan tinggi (1.5 bar) dan 121 °C selama 15 minit. Pengurangan maksimum diperolehi dengan menggunakan sterilisasi sebanyak 2% dari Na$_2$S$_2$O$_4$ dan hasil berkurang sebanyak 96.0, 96.1, 77.7, 100% dan 100% untuk OTA, AFB$_1$, AFB$_2$, AFG$_1$ dan AFG$_2$, masing-masing. Dengan menerapkan kaedah ini untuk lada hitam dan putih, lebih daripada penurunan 95% dari OTA dan aflatoxsin B$_1$, dan G$_1$, yang merupakan mikotoksin yang paling berbahaya, diperolehi.
ACKNOWLEDGEMENTS

In the name of God all mighty, my full praise is directed towards him for providing me faith to complete my studies. I wish to express my sincere gratitude and appreciation to the people who have both directly and indirectly contributed to this thesis. The following are those to whom I am particularly indebted: Professor Dr Jinap Selamat for the preparation of my thesis. After all without all her maximum patience, kindness, academic expertise, and of course her scientific guidance, none of this would have been possible. I am extremely grateful to my supervisory committee members, Prof Dr Son Radu and Dr Noranizan Mohd Adzahan for their valuable contribution and suggestions.

My special thanks and deepest appreciation is to my mother, my sisters and my brothers for their understanding, caring, everlasting love and patience. All this ingredients help me to focus at my Ph.D. study and a good recipe to the completion of the thesis. My mother has always been there for me and I was privileged to receive her kind, loving upbringing. Rezvan and Beheshteh, my sisters; Mahmood and Ahmad, my brothers thanks for being supportive and caring.

I would also like particularly to acknowledge the contribution of my dear friend Elham Moazami Farahany, Mahnaz Fallahi, Sahar, Afsaneh, Gisia, Wael, Wendy, Shilla, Maimunah, Leili, Anosheh, Farhang and Diana for being supportive friends and wish them all the very best for the future.
I certify that an Examination Committee met on - / - / - to conduct the final examination of Maryam Jalili on her PhD degree of Food Science thesis entitled “Detection and reduction of aflatoxins and ochratoxin A in black and white pepper” in accordance with Universiti Pertanian Malaysia (higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulations 1981. The committee recommends that the candidate be awarded the relevant degree.

Members of the Examination Committee are as follows:

(Chairman)

(Internal Examiner I)

(Internal Examiner II)

(External Examiner)

HASANAH MOHD. GHAZALI, Ph.D.
Professor/ Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:

X
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfilment of the requirement for the degree of Doctor of Philosophy. The members of the Supervisory Committee were as follows:

Jinap Selamat, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Chairman)

Son Radu, PhD
Professor
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

Noranizan Mohd Adzahan, PhD
Lecturer
Faculty of Food Science and Technology
Universiti Putra Malaysia
(Member)

__

HASANAH MOHD GHAZALI, PhD
Professor and Deputy Dean
School of Graduate Studies
Universiti Putra Malaysia

Date:
DECLARATION

I declare that the thesis is my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously and is not concurrently submitted for any other degree at Universiti Putra Malaysia or at any other institutions.

MARYAM JALILI

Date:
TABLE OF CONTENTS

DEDICATION	ii
ABSTRACT	iii
ABSTRAK	vi
ACKNOWLEDGEMENT	ix
APPROVAL	x
DECLARATION	xii
LIST OF TABLES	xvii
LIST OF FIGURES	xxi
LIST OF ABBREVIATIONS	xxiv
LIST OF APPENDICES	xxviii

CHAPTER

1 INTRODUCTION
1.1 Background of study 1
1.2 Objectives 5

2 LITERATURE REVIEW
2.1 Pepper 6
 2.1.1 Botanical and Physical Description 6
 2.1.2 Classification 7
 2.1.3 World Production and Trade 10
2.2 Fungi Growth and Mycotoxin Production 12
2.3 Aflatoxin 13
 2.3.1 Physical Specification of Aflatoxin 15
 2.3.2 Chemical Properties of Aflatoxin 18
 2.3.3 Occurrence of AFs 21
 2.3.4 Toxicity Kinetics of Aflatoxin 26
 2.3.5 Toxicity of aflatoxin 30
 2.3.6 Mutagenicity and Carcinogenicity of Aflatoxin 30
 2.3.7 International Legislation 32
2.4 Ochratoxin 34
 2.4.1 Chemical and Physical Properties of OTA 35
 2.4.2 Natural Occurrence of OTA in Food 37
 2.4.3 Natural Occurrence of OTA in Human Blood and Milk 39
 2.4.4 Health Aspect of OTA 40
 2.4.5 International Legislation of OTA 42
2.5 Pepper Contamination 44
2.6 Determination of AFs and OTA 45
 2.6.1 Sampling and sample preparation 46
5 EFFECT OF GAMMA RADIATION ON THE REDUCTION OF AFLATOXINS AND OCHRATOXIN IN BLACK AND WHITE PEPPER

5.1 Introduction 120
5.2 Materials and Methods 122
 5.2.1 Materials and Chemicals 122
 5.2.2 Moisture Content Adjustment 123
 5.2.3 Sample Preparation and Irradiation 124
 5.2.4 Method Validation 124
 5.2.5 Experimental Design 125
 5.2.6 Statistical Analysis 125
5.3 Results and discussion 126
 5.3.1 Linearity and Recovery 126
 5.3.2 Effect of Concentration of OTA and Aflatoxin on Reduction 128
 5.3.3 Effect of Gamma Doses on the Reduction of AFs and OTA 128
 5.3.4 Effect of Moisture Content Regardless to Gamma Dose and Type of Mycotoxin 135
5.4 Conclusion 139

6 EFFECT OF DIFFERENT CHEMICAL COMPOUNDS ON MYCOTOXIN REDUCTION IN BLACK AND WHITE PEPPER

6.1 Introduction 140
6.2 Materials and Chemicals 143
 6.2.1 Materials and Chemicals 143
 6.2.2 Sample Preparation 143
 6.2.3 Statistical Analysis 144
6.3 Results and Discussion 144
 6.3.1 Effect of chemicals 144
6.4 Conclusion 160

7 OPTIMIZATION THE METHOD FOR REDUCTION OF AFLATOXINS AND OCHRATOXIN A IN WHITE PEPPER USING RESPONSE SURFACE METHODOLOGY

7.1 Introduction 161
7.2 Materials and Methods 163
 7.2.1 Color Measurement 163
 7.2.2 Experimental Design 164
 7.2.3 Statistical Analysis 168
7.3 Results and Discussion 169
 7.3.1 Model Fitting 169
 7.3.2 Effect of Treatment on Reduction of AFs and 173
8 EFFECT OF SODIUM HYDROSULFITE ON THE REDUCTION OF AFLATOXINS AND OCHRATOXIN IN BLACK PEPPER DURING BOILING AND STERILIZATION

8.1 Introduction 187
8.2 Materials and Methods 190
8.2.1 Sample Preparation and Treatment 190
8.2.2 Statistical Analysis 190
8.3 Results and Discussions 191
8.3.1 Method validation 191
8.3.2 Effect of Sodium Hydrosulfite Concentration on the Reduction of AFs and OTA 191
8.3.3 Effect of Treatment 201
8.4 Conclusion 206

9 GENERAL CONCLUSION AND RECOMMENDATION 207

REFERENCES 211
APPENDICES 241
BIODATA OF THE STUDENT 250
LIST OF PUBLICATIONS 251