DEVELOPMENT OF HIGH QUALITY PRINTING PAPER
USING KENAF (HIBISCUS CANNABINUS) FIBERS

By

ALIREZA ASHORI

Thesis Submitted to the School of Graduate Studies, Universiti Putra Malaysia, in
Fulfillment of the Requirements for the Degree of Doctor of Philosophy

December 2004
Kenaf (Hibiscus cannabinus) is an annual non-wood plant which has shown great potential as an alternative source of papermaking fiber. The purpose of this research was to investigate the suitability of Malaysian cultivated kenaf fibers in the production of high quality printing paper.

The first part of the research characterized the chemical, morphological and pulping properties of kenaf fractions. The bast fibers had a lower lignin content, higher cellulose content, and lower hemicellulose content compared to the core fibers. The whole stem kenaf had lower lignin and cellulose content, and hemicellulose and ash content was comparable to softwood. Fiber morphology results showed that kenaf bast fibers were
long and slender, while the core fibers were much shorter and wider. Morphology and chemical analysis indicated that bast and core fibers were significantly different.

In this part, the pulping properties of different fractions of kenaf were also studied. The pulping experiments led to the conclusion that bast fibers are relatively easy to delignify during pulping, followed by the whole stem and the core kenaf fractions. An unbleached whole kenaf pulp with high viscosity, good bleaching characteristics and relatively good yield could be produced with the kraft pulping process.

The second part of the research investigated the production of bleached pulp using environmentally-friendly method, TCF. Conventional Elemental Chlorine Free (ECF) bleaching sequences were also used to compare the results with the TCF sequences. The results indicated that in contrast to unbleached kraft wood pulps, kraft kenaf pulps can be easily bleached to a brightness of 91.4% using a 4-stage TCF \[Q_1(PO)Q_2P\] bleaching sequence. This will be a significant advantage for kenaf over wood.

The third part of the research studied the polymer deposition, surface topography and printability. The utilization of chitosan in sizing improved the paper strength and surface properties significantly, but its effectiveness was strongly dependent on the method of addition and concentration. Spray deposition application gave superior strength properties followed by equilibrium adsorption. It is less effective under alkaline conditions. The effect of chitosan was compared with cationic starch and polyvinyl alcohol (PVA). Sizing quality of cationic starch fairly matched with the sizing quality of chitosan, however, it
was able to reduce the water absorption potential of paper more than chitosan at a same concentration (i.e. 2%).

The final part of study demonstrated that the use of chitosan in optimum dosage could improve the printability and print quality of kenaf paper in terms of surface roughness, water and oil absorption, ink penetration, print density, ink set-off and gloss contrast for offset printing.

The overall conclusion is that whole stem kenaf is an attractive raw material that is suitable for use in the production of high quality printing paper in areas where forest resources are inadequate to supply a kraft mill of economic size. Chitosan is recommended as an additive in conventional surface sizing to enhance strength and surface properties for printing paper.
Abstrak tesis yang dikemukakan kepada Senat Universiti Putra Malaysia
Sebagai memenuhi keperluan untuk ijazah Doktor Falsafah

PEMBANGUNAN KERTAS CETAKAN YANG BERKUALITI TINGGI
MENGUNAKAN GENTIAN KENAF (HIBISCUS CANNABINUS)

Oleh

ALIREZA ASHORI

Disember 2004

Pengerusi : Jalaluddin Harun, Ph.D.
Institut : Teknologi Maju

Kenaf (Hibiscus cannabinus) adalah sejenis pokok tahunan bukan kayu yang berpotensi untuk menjadi sumber pilihan bagi gentian didalam pembuatan kertas. Tujuan kajian ini adalah untuk menyiaskan penghasilan kertas cetakan yang berkualiti tinggi dari kenaf (Hibiscus cannabinus) dengan.

Bahagian pertama kajian menerangkan sifat-sifat kimia, morfologi dan mempulpa bagi bahagian pokok kenaf. Gentian ‘bast’ mempunyai kandungan lignin yang rendah, kandungan selulos yang tinggi dan kandungan hemiselulos yang rendah berbanding
dengan gentian teras kenaf. Keseluruhan batang kenaf mengandungi lignin dan selolos yang rendah, dan kandungan hemiselulos dan abu yang lebih kurang sama berbanding kayu conifer.

Hasil gentian morfologi menunjukkan bahawa gentian ‘bast’ bagi kenaf adalah panjang dan pipih, manakala gentian teras pula pendek dan lebar. Analisis morfologi dan kimia menunjukkan bahawa gentian ‘bast’ dan gentian teras adalah berbeza.

Dalam bahagian ini, sifat mempulpa bagi bahagian kenaf yang berlainan juga dikaji. Ujian mempulpa memberi kesimpulan bahawa gentian ‘bast’ mudah dilignifikasi semasa proses mempulpa diikuti dengan keseluruhan bahagian dan bahagian teras kenaf. Pulpa kenaf tidak diluntur mempunyai sifat viscosity tinggi, sifat pelunturan yang baik dan peratus hasil yang baik melalui proses mempulpa kraft.

Bahagian kedua bagi penyelidikan ini menyiasat tentang penghasilan pulpa yang diluntur dengan menggunakan kaedah mesra alam. Peraturan melumtur konvensional Elemental Chlorine Free (ECF) telah digunakan untuk membuat perbandingan hasil dengan kaedah TCF. Hasil menunjukkan bahawa keseluruhan gentian kenaf dapat diluntur dengan mencapai kertas yang cerah dengan menggunakan proses TCF dan ECF. Nisbah cerah bagi TCF adalah lebih baik dari kaedah ECF. Keputusan pelunturan menunjukkan bahawa pulpa kenaf boleh diluntur mencapai kecerahan 91.4% (ISO) dengan menggunakan 4-peringkat pelunturan TCF \([Q_1(PO)Q_2P]\). Ini merupakan pencapaian baik bagi kenaf berbanding dengan gentian kayu.
Bahagian ketiga bagi kajian ini berkaitan dengan pempolimeran dan sifat percetakan. Kegunaan chitosan, cationic starch dan polyvinyl alcohol (PVA) sebagai aditif untuk menambah baik sifat permukaan kertas tertakluk kepada kepekatan dan kaedah yang digunakan. Hasil kajian menunjukan dengan jelas bahawa penambahan chitosan kepada pulpa daripada gentian yang telah dipukul dapat menambah kekuatan yang baik, berbanding dengan penambahan aditif yang lain. Ini dapat dilihat dengan peningkatan nilai kekuatan koyak, tensil dan pecah. Kesan dari chitosan telah dibandingkan dengan cationic starch dan PVA. Kualiti cationic starch bersamaan dengan kualiti chitosan. Walaubagaimanapun, ia dapat mengurangkan potensi keserapan air oleh kertas berbanding chitosan pada kepekatan yang sama (iaitu 2%).

Bahagian terakhir kajian menunjukan bahawa kegunaan chitosan didalam dos yang berpatutan dapat menambah daya dan kualiti cetakan kertas kenaf dari segi kekasaran permukaan, penyerapan air dan minyak, penyerapan dakwat, kepadatan cetakan dan kelincinan bahan percetakan.

Secara keseluruhannya, kenaf merupakan bahan mentah yang berpotensi untuk menghasilkan kertas cetakan yang berkualiti tinggi. Chitosan juga mempunyai potensi yang baik untuk digunakan sebagai ‘sizing’ permukaan bagi menambah kekuatan dan sifat permukaan kertas cetakan.
ACKNOWLEDGEMENTS

The author wishes to express his deepest appreciation to all the persons who have inspired, advised and assisted him during this study. Special recognition and sincere appreciation is extended to Dr. Jalaluddin Harun, the chair of the supervisory committee, for his invaluable guidance and encouragement throughout this work. The help and support of other members of the supervisory committee, Prof. Dr. Wan Zin, Dr. Mohd Nor, Dr. Khairul Zaman and Assoc. Prof. Dr. Wan Rosli is deeply appreciated.

I express my deepest gratitude to Dr. W.D. Raverty, Research Team Leader, Dr. N. Vanderhoek, Senior Principal Research Scientist, and Mr. J. V. Ward, Principal Experimental Scientist, of the Commonwealth Scientific and Industrial Research Organization (CSIRO), for their scientific and stimulating discussions during my days in Melbourne, Australia. I would also like to thank Dr. J.E. Atchison for providing a lot of information about non-wood plant fibers.

I would like to express utmost thanks to the staffs of the Laboratory of Wood Chemistry Division of Forest Research Institute of Malaysia (FRIM), Pulp and Paper Laboratory (School of Industrial Technology) of Universiti Sains Malaysia, CSIRO Forestry and Forest Products and National Printing Laboratory (Monash Uni., Melbourne, Australia)
for the positive and dynamic working atmosphere. My special thanks are due to Mr. Yong Fook Onn (FRIM), Mrs. K. Hands, Mr. M. H. Greaves (CSIRO) and Mr. J. McConnell and Mr. L. Mellett (Monash Uni.) for their excellent technical assistance in performing several analyses included in this thesis. I also thank Ms. C. Larson for the linguistic revisions of this thesis.

My graduate study in Malaysia was financially supported by the Ministry of Science, Research, and Technology (MSRT) of Iran. Thanks very much for giving me this opportunity. I would like to sincerely thank Prof. Dr. J. Farhoudi and Prof. Dr. A. Kouhian, Representative Scientific Counselors, for their advice and guidance during my study in Malaysia and Australia.

Last, but certainly not least, the author wishes to extend his gratefulness and indebtedness to his family members for their support, encouragement and continuing assistance over the past 38 years.
I certify that an Examination Committee met on 30th December 2004 to conduct the final examination of Alireza Ashori on his Doctor of Philosophy thesis entitled “Development of High Quality Printing Paper using Kenaf (Hibiscus cannabinus) Fibers” in accordance with Universiti Pertanian Malaysia (Higher Degree) Act 1980 and Universiti Pertanian Malaysia (Higher Degree) Regulation 1981. The Committee recommends that the candidate be awarded the relevant degree. Members of the Examination Committee are as follows:

**SHAH NOR BASRI, Ph.D.**
Professor
Faculty of Engineering
Universiti Putra Malaysia
(Chairman)

**MOHD SAPUAN SALIT, Ph.D.**
Associate Professor
Faculty of Engineering
Universiti Putra Malaysia
(Member)

**SARANI ZAKARIA, Ph.D.**
Associate Professor
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
(Independent Examiner)

**KEN (KWEI-NAM) LAW, Ph.D.**
Professor
Pulp and Paper Research Center
Université du Québec à Trois-Rivières
(Independent Examiner)
GULAM RUSUL RAHMAT ALI, Ph.D.
Professor/Deputy Dean
Faculty of Graduate Studies
Universiti Putra Malaysia

Date: 22 February 2005
This thesis was submitted to the Senate of Universiti Putra Malaysia and has been accepted as fulfillment of the requirement for the degree of Doctor of Philosophy.
The members of the Supervisory Committee are as follows:

JALALUDDIN HARUN, Ph.D.
Senior Lecturer
Institute of Advanced Technology
Universiti Putra Malaysia
(Chairman)

WAN MD. ZIN, Ph.D.
Professor
Faculty of Science
Universiti Putra Malaysia
(Member)

WAN ROSLI, Ph.D.
Associate Professor
School of Industrial Technology
Universiti Sains Malaysia
(Member)

MOHD NOR, Ph.D.
Director
Wood Chemistry Program
Forest Research Institute of Malaysia
(Member)

KHAIRUL ZAMAN, Ph.D.
Director
Radiation Processing Technology Division
Malaysian Institute for Nuclear Technology Research
(Member)
DECLARATION

I hereby declare that the thesis is based on my original work except for quotations and citations, which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UPM or other institutions.

__________________
ALIREZA ASHORI

Date: 28 January 2005
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>2</td>
</tr>
<tr>
<td>ABSTRAK</td>
<td>5</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>8</td>
</tr>
<tr>
<td>APPROVAL</td>
<td>11</td>
</tr>
<tr>
<td>DECLARATION</td>
<td>12</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>17</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>20</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>24</td>
</tr>
</tbody>
</table>

# CHAPTER

1 **GENERAL INTRODUCTION**

1.1 Availability of Raw Material to Pulp and Paper Industry

1.2 Non-wood Fibers

1.3 Non-wood Fibers as Pulp and Papermaking Raw Material

1.4 Challenges in the Use of Non-woods

1.5 Kenaf for Papermaking

1.6 Problem Statement and Rationale

1.7 Research Objectives

1.8 Organization of Thesis

2 **LITERATURE REVIEW**
2.1.3.2 Cellulose
2.1.3.3 Hemicelluloses
2.1.3.4 Extractives
2.1.4 Chemical Pulping of Kenaf Fibers
   2.1.4.1 Kraft Pulping
2.2 Pulp Bleaching
   2.2.1 Bleaching Processes
   2.2.2 Use of Oxygen and Peroxide in ECF Bleaching
   2.2.3 Hydrogen Peroxide Bleaching
   2.2.4 Conditions of Hydrogen Peroxide Bleaching
   2.2.4.1 Mechanisms of Peroxide Decomposition in Alkaline Solution
   2.2.4.2 Effect of Magnesium on Stability of Alkaline Peroxide Solutions
   2.2.5 Pressurized Peroxide Bleaching
   2.2.6 Oxygen Bleaching
   2.2.7 Ozone Bleaching
   2.2.7.1 Conditions of Ozone Bleaching
2.3 Ways to Increasing the Strength and Surface Properties of Paper
   2.3.1 Beating of Fibers
   2.3.2 Dry-strength Additives
   2.3.3 Sizing
   2.3.3.1 Polyvinyl Alcohol
   2.3.3.2 Starch
   2.3.3.3 Chitosan
   2.4 Topography of Surface
2.5 Printing Paper

3 MATERIALS AND METHODS
   3.1 Chemical Characteristics
      3.1.1 Raw Material Preparation
      3.1.2 Organic Compositions
      3.1.3 Inorganic Compositions
   3.2 Fiber Morphology Determination
   3.3 Kraft Pulping
   3.4 Determination of Pulp Reject, Yield and Kappa Number
   3.5 Handsheets Formation and Testing
   3.6 Pulp Bleaching Procedures
      3.6.1 Oxygen Bleaching
      3.6.2 Ozone Bleaching
3.6.3 Hydrogen Peroxide Bleaching
3.6.4 Oxygen Pressurized Hydrogen Peroxide Bleaching
3.6.5 Chelation
3.6.6 ECF Bleaching
3.7 Determination of Bleached Pulp Properties
  3.7.1 Kappa Number
  3.7.2 Viscosity
  3.7.3 Selectivity
  3.7.4 Pulp Brightness
3.8 Beating of Pulps
3.9 Handsheet Making and Paper Evaluation
3.10 Determination of Basis Weight, Thickness and Bulk
3.11 Characteristics of Polymers Used for the Experiment
3.12 Application of Polymers
3.13 Determination of Properties of Treated Papers
  3.13.1 Retention of Polymer on Paper
  3.13.2 Film Forming Characteristics
3.14 Printability and Print Quality Tests
  3.14.1 Surface Topography
  3.14.2 Dynamic Absorption Test (DAT)
  3.14.3 Oil Absorption
  3.14.4 Ink Transfer
  3.14.5 Ink Set-off and Ink Density
  3.14.6 Ink Penetration Depth
4 RESULTS AND DISCUSSIONS
4.1 Chemical Components of Kenaf Fractions
  4.1.1 Organic Compositions
    4.1.1.1 Holocellulose Content
    4.1.1.2 Alpha-cellulose Content
    4.1.1.3 Hemicellulose Content
    4.1.1.4 Pentosan Content
    4.1.1.5 Lignin Content
    4.1.1.6 Extractives Content
  4.1.2 Inorganic Compositions
    4.1.2.1 Ash Content
    4.1.2.2 Trace Element
4.2 The Morphology of Kenaf Fibers
4.3 Laboratory-scale Pulping of Kenaf
4.4 Handsheet Evaluations
  4.4.1 Canadian Standard Freeness
  4.4.2 Sheet Density
  4.4.3 Tear Index
4.4.4 Burst Index
4.4.5 Tensile Index
4.4.6 Tensile Energy Absorption
4.4.7 Stretch
4.4.8 Zero-span Breaking Length
4.5 Whole Stem
4.6 Bleaching of the Pulp with ECF and TCF Sequences
4.7 Evaluation of Bleaching Processes
4.7.1 Pulp Brightness
4.7.2 Viscosity and Selectivity
4.7.3 Pulp Yield
4.7.4 Strength Properties of Bleached Pulp
4.7.5 Preliminary Screening
4.8 Properties of TCF and ECF Bleached Kenaf Pulps after Beating
4.9 Effect of Polymers on Paper Properties
4.9.1 Chitosan
4.9.2 Cationic Starch and PVA
4.9.3 Retention of Polymers on the Fibers
4.9.4 Effect of Chitosan Addition on Surface Properties of Paper
4.9.5 Effect of Cationic Starch Addition on Surface Properties of Paper
4.9.6 Effect of PVA Addition on Surface Properties of Paper
4.9.7 Effect of Chitosan as an Additive in Surface Sizing
4.10 Surface Topography and Printability
4.10.1 Characterization of Surface Topography (Profilometry)
4.10.2 Dynamic Absorption Test
4.10.3 Oil Absorption
4.10.4 Ink Transfer
4.10.5 Print Density and Ink Penetration
4.10.6 Ink Set-off
4.10.7 Gloss Contrast
5 CONCLUSIONS AND RECOMMENDATIONS
LIST OF TABLES

Table                                                                                                                           Page

1.1  Comparison of physical and chemical properties of non-wood fibers with those of wood raw materials  Error! Bookmark not defined.

2.1  Annual dry matter (DM) and pulp yield of various fiber plants  Error! Bookmark not defined.

2.2  Chemical component of kenaf fractions from various sources in the literatures  Error! Bookmark not defined.

2.3  Comparison of the amylose and amylopectin components of starch  Error! Bookmark not defined.
3.1 Pulping process conditions for kraft cooking

3.2 ECF bleaching conditions

3.3 Characteristics of chitosan, cationic starch and PVA

4.1 Trace elements concentration of different kenaf fractions

4.2 Fiber characteristics of kenaf fractions

4.3 The physical properties of unbeaten kenaf pulps

4.4 The properties of whole kenaf bleached pulp using TCF and ECF techniques

4.5 The strength properties of unbleached and bleached unbeaten pulps

4.6 Strength properties of handsheets made of bleached kenaf pulp treated with chitosan

4.7 Strength properties of sheets made of bleached kenaf pulp treated with cationic starch

4.8 Strength properties of sheets made of bleached kenaf pulp treated with PVA

4.9 Effect of chitosan on surface properties of paper

4.10 Effect of cationic starch on surface properties of paper

4.11 Effect of PVA on surface properties of paper

4.12 Roughness values with different measuring methods
4.13 Contact angles between distilled water and various papers Error! Bookmark not defined.

4.14 Printability and print quality properties Error! Bookmark not defined.

4.15 Gloss of the sized and unsized papers Error! Bookmark not defined.
## LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Stem structure of a dicotyledon, kenaf, and a monocotyledon [16]</td>
</tr>
<tr>
<td>2.2</td>
<td>Diagram of cell wall organization [59]</td>
</tr>
<tr>
<td>2.3</td>
<td>Lignin precursors</td>
</tr>
<tr>
<td>2.4</td>
<td>The different contact angles associated with perfect wetting, partial wetting and no wetting [124]</td>
</tr>
<tr>
<td>2.5</td>
<td>Chemical formulas of chitin (a), chitosan (b), and chitosan acetate form (c)</td>
</tr>
<tr>
<td>2.6</td>
<td>The formation of ionic and imino bonds between chitosan and pulp fibers</td>
</tr>
<tr>
<td>2.7</td>
<td>As acetic acid evaporates during sheet drying, the acetate counter ion is lost, probably causing chitosan acetate form to convert into the chitosan primary amino group form.</td>
</tr>
<tr>
<td>3.1</td>
<td>Kenaf plant as grown in field at MARDI</td>
</tr>
<tr>
<td>3.2</td>
<td>Flowchart of kenaf pulping by kraft process</td>
</tr>
<tr>
<td>3.3</td>
<td>Autoclave for oxygen bleaching</td>
</tr>
<tr>
<td>3.4</td>
<td>Apparatus used for ozone bleaching</td>
</tr>
<tr>
<td>3.5</td>
<td>Flow chart of forming handsheets for physical and surface testing</td>
</tr>
<tr>
<td>3.6</td>
<td>a) Roughness profilometer   b) Principle of measurement</td>
</tr>
</tbody>
</table>
3.7 Dynamic Absorption Test apparatus

3.8 a) IGT set up for varnishability test  b) Stain effects

3.9 a) High speed inking unit 4  b) IGT Printability Tester, Model AIC2-5

3.10 a) IGT printing sector and wheels  b) Color spectrodensitometer

4.1 Chemical compositions of different fractions of kenaf

4.2 Photomicrograph of kenaf fibers under different magnifications

(P = parenchyma cells, F = fibers, B = bordered pits)

4.3 Laboratory kraft pulping results for Malaysian grown kenaf

4.4 Strength properties of kenaf fractions at different active alkali charges

4.5 Variation of bleached pulp freeness with PFI mill revolutions

4.6 Variation of tensile index with bleached pulp freeness

4.7 Variation of density with tensile index

4.8 Variation of air resistance with tensile index

4.9 Variation of burst index with tensile index

4.10 Variation of tear index with tensile index
4.11 Variation of tensile energy absorption with tensile index  

4.12 Variation of stretch with tensile index  

4.13 Variation of zero-span with tensile index  

4.14 Improvement in physical properties of handsheets treated with chitosan by the spray technique  

4.15 Improvement in physical properties of handsheets treated with chitosan by the equilibrium adsorption (pH 5)  

4.16 Improvement in physical properties of handsheets treated with chitosan by the precipitation technique (pH 10)  

4.17 Improvement in physical properties of C.S. treated handsheet  

4.18 Improvement in physical properties of PVA treated handsheets  

4.19 Retention of chitosan on to bleached kenaf pulp using spary (pH 5), adsorption (pH 5) and precipitation (pH 10) methods  

4.20 Retention of cationic starch and PVA on to bleached kenaf pulp using spray method  

4.21 Film forming potential of chitosan at different concentrations  

4.22 Film forming potential of cationic starch at different concentrations  


4.23 Comparison of profile scan of unsized and sized papers

4.24 Height distribution of unsized and sized papers measured with profile tester

4.25 Three-dimensional topographic maps of sized and unsized papers

4.26 Absorption properties of different papers as a function of time

A.1 Apparatus for making handsheets a) disintegrator, b) handsheet machine

A.2 Cutting of a handsheet for strength testing

A.3 Horizontal Tensile Tester

A.4 Elmendorf Tear Tester

A.5 Burst Tester

A.6 Pulmac Zero-Span Tester

A.7 The capillary-type viscometer

A.8 Brightness and opacity meter

A.9 PFI Mill

A.10 CSF Tester

A.11 Bendtsen Roughness Tester

A.12 Gurley Densometer

A.13 Parker Print-Surf Tester

A.14 a) A series of waxes, b) Wax Pick Test
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>a.d.</td>
<td>Air-dried (weight)</td>
</tr>
<tr>
<td>pka</td>
<td>Electrostatic potential</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variations</td>
</tr>
<tr>
<td>AOX</td>
<td>Absorbable organic halogens /halides</td>
</tr>
<tr>
<td>BDT</td>
<td>Bone-dry tonne</td>
</tr>
<tr>
<td>BOD</td>
<td>Biochemical (biological) oxygen demand</td>
</tr>
<tr>
<td>CED</td>
<td>Cupri-ethylenediamine</td>
</tr>
<tr>
<td>COD</td>
<td>Chemical oxygen demand</td>
</tr>
<tr>
<td>Consistency</td>
<td>Ratio of dry weight to wet weight (pulp)</td>
</tr>
<tr>
<td>cP</td>
<td>Centipoise</td>
</tr>
<tr>
<td>CSF</td>
<td>Canadian standard freeness</td>
</tr>
<tr>
<td>D</td>
<td>Chlorine dioxide (bleaching)</td>
</tr>
<tr>
<td>DP</td>
<td>Degree of polymerization</td>
</tr>
<tr>
<td>DS</td>
<td>Degree of substitution</td>
</tr>
<tr>
<td>DTPA</td>
<td>Diethylenetriamine penta-acetic acid</td>
</tr>
<tr>
<td>E</td>
<td>Alkaline extraction (bleaching)</td>
</tr>
<tr>
<td>ECF</td>
<td>Elemental Chlorine Free (bleaching)</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediamine tetra-acetic acid</td>
</tr>
<tr>
<td>gsm</td>
<td>Grammage, g/m²</td>
</tr>
</tbody>
</table>