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ABSTRACT 

We show that the quantum Fourier transform on finite fields used to solve query 
problems is a special case of the usual quantum Fourier transform on finite Abelian 
groups. We show that the control-target inversion property holds in general. We 
apply this to get a sharp query complexity separation between classical and quantum 
algorithms for a hidden homomorphism problem on finite Abelian groups. 
 
Keywords: Quantum Fourier transform, inversion property, hidden homomorphism 
problem. 

 

 

INTRODUCTION 

One of the models which is used in checking the outperformance of 

quantum algorithms versus classical algorithms is the query model. In this 
model, the input can only be accessed by means queries to a black box. 

Efficiency of computation then is measured by the number of required 

queries. A famous example of query algorithm is Grover’s algorithm (see 

Grover,(1998)) for searching a list of n elements with ( )O n quantum 

queries. 

 

In query complexity computation, one usually tries to find efficient 
quantum algorithms as well as lower bounds on the number of queries that 

any quantum or classical algorithm needs. This lower bound or exact or 

bounded-error classical algorithms is used to check the outperformance of a 
given efficient quantum algorithm over all possible classical counterparts. 

Probably the first instance of a significant 

 

Outperformance was demonstrated in the Deutsch algorithm 
appeared in Deutsch,(1985), extended by Deutsch and Jozsa in Deutsch-

Jozsa,(1992). The later solves an ( )1n bit+ − query problem using one query 
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by a quantum algorithm with a lower bound of ( )2nΩ queries in exact 

classical solutions. Although it turned out later that this problem could be 

solved using ( )0 1 queries with a bounded-error classical algorithm, the same 

query complexity separation has shown to exist between quantum and 

bounded-error classical algorithms, see Bernstein-Vazirani,(1997). This kind 
of separation has been pushed further in de Beaudrap et al.,(2000) in which 

a 2n-query problem is presented that is solved by a quantum algorithm using 

one query and has a lower bound of ( )/ 2
2

nΩ in any bounded-error classical 

solution. The problem discussed in de Beaudrap et al.,(2000) is called the 

hidden linear structure problem and is defined on a finite field GF ( )2
n

 

(identified with {0,1}
n
) as follows 

 

Hidden Linear Structure Problem. Let π be a permutation on (2 )n
GF  and 

(2 )n
s GF∈ . Define a black box Bs on (2 ) (2 )n n

GF GF× by  

 

( , ) ( , ( ))
s

B x y x y sxπ= + . 

 

Determine the value of s. 

The quantum algorithm in de Beaudrap et al.,(2000) is based on a version of 

the quantum Fourier transform (QFT) on finite fields (a similar operation is 

used in van Dam-Hallgren,(2000) to solve a shifted quadratic character 
problem). The argument in de Beaudrap et al.,(2000) then proceeds using a 

control-target inversion property of the QFT. This is an intertwining 

property involving two linear operators defined by algebraic operations 
involving s. 

 

In this paper we show that this is nothing but the usual quantum Fourier 

transform on the Abelian group ( )( ),GF q + with respect to a special choice 

of the Fourier basis. Then we show that the control-target inversion property 

holds for a wide class of group homomorphisms on general finite Abelian 
groups. We use this to show that there is a sharp query complexity 

separation between the bounded-error classical and exact quantum 

algorithms in solving a generalization of the linear structure problem in the 
context of Abelian groups. This problem could be called a hidden 

homomorphism problem and is stated as follows. 

 

Let G  be a finite (additive) Abelian group and fix a Fourier basis Λ for the 

group algebra ℂG, let ( , )Hom G GΛ  be the set of all group homomorphisms 
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on G  which are compatible with λ  (see section 2 for details), then the 

problem is 

 

Hidden Group Homomorphism Problem. Let π  be a permutation on G , 

a G∈ , and ( , )Hom G Gψ Λ∈ . Define a black box Bψ  on G G×  by 

 

( , ) ( , ( ( ))).B x y x y xψ π ψ= +  

 

Determine the value of ( )aψ .
 

When ( )( ), , 1G GF q a= + = and ( )x sxψ = , this problem reduces to the 

hidden structure problem. 

 
In section 2 we review the QFT on finite Abelian groups. Our basic 

reference is Jozsa,(1998). In section 3 we prove the control-target inversion 

property on groups. Section 4 is devoted to the quantum solution of the 

hidden group homomorphism problem and corresponding classical lower 
bounds. In this section we present a variation of the control-target inversion 

property which leads to another generalization of the results of de Beaudrap 

et al.,(2000) to non commutative rings. 

 

 

QUANTUM FOURIER TRANSFORM ON ABELIAN GROUPS 

Let G be a finite Abelian group. To emphasize that our group is 

Abelian, we use the addition as the group operation (this also helps to avoid 
any confusion when we later deal with the additive group of a finite field). 

Let H be a Hilbert space with the orthonormal basis { : },x x G∈  called the 

standard basis of H. Indeed the group algebra ℂG is a candidate for this 

Hilbert space. There is a natural action of G  on H  by translation 

 

: ( , ).x y x y x y G→ + ∈  

 
A character on G is a nonzero group homomorphism : Gχ → � 

where � is the multiplicative group of the complex numbers of modulus 1. 

As each x G∈ has an order dividing :n G= , the values ( )xχ are thn roots of 

unity. The set Ĝ  of all characters on G is an Abelian group with respect to 

the point wise multiplication and is called the dual group of G. It is well 

known that |Ĝ|=|G|=n, and if Ĝ ={�1,…,�n} then we have the Schur’s 

orthogonality relations 
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1

| |
( ) ( )

i j ijG x G
x xχ χ δ

∈
− =∑ , 

for each 1 ,i j n≤ ≤ . 

 

We prefer to index the elements of Ĝ  by elements of G, so we write 

Ĝ={�x: x∊G}. For each x G∈ consider the state 

 

( ) ,
x xy G

y yχ χ
∈

= −∑
 

 

then the above orthogonality relations imply that { : }
x

x Gχ ∈ forms an 

orthonormal basis for H, called the Fourier basis of H. This basis is 

translation invariant in the sense that 

 

( ) ( , )x y yx x x y Gχ χ χ= ∈ . 

 

Also we may always assume that 
x y x y

χ χ χ += and 0
1χ = . Let 

: G Gψ → be a group homomorphism. We say that ψ  is compatible with 

the Fourier basis of G if 

 

( )( ( )) ( ) ( , )
y x

z z y z Gψχ ψ χ= ∈ . 

 

Given a Fourier basis Λ (that is a given choice of the indexing Ĝ with 

G) we denote the set of all homomorphisms ψ of G  compatible with Λ  by 

( , ).Hom G GΛ  On any finite Abelian group G  we have a family of such 

homomorphisms constructed using the structure theorem for G . Every finite 

Abelian group G  is iso G orphic to the Cartesian product of cyclic groups, 

say 
1

j
j k m

G
≤ ≤

= ∏ Z . For each 1
( , , )

k
x x x G= ∈…

 
with ,

jj m
x ∈Z we have the 

character 

 

11
( ) ( ( , , ) )j jx y

x j kj k
y y y y Gχ ω

≤ ≤
= = ∈∏ …

 

where 
2 i
m j

j e
π

ω =  and the product 
j j

x y is calculated (mod mj). Then 

{ : }
x

x GχΛ = ∈  is a Fourier basis and for each 1
( , , )

k
s s s G= ∈…

 
defines a 

homomorphism s
ψ  by 

 

1 1 1
( ) ( , , ) ( ( , , ) )

s k k k
y s y s y y y y Gψ = = ∈… …
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which is clearly compatible with Λ . Here again the products 
j j

s y are 

defined (mod mj). The quantum Fourier transform
1
 on G is the unitary 

operator :
G

F H H→ defined by 

 
1

| |
( ) ( , )

xG y G
x y y x y Gχ

∈
∈∑� . 

 

Note that one can extend this map by linearity on H and the fact that it is 
unitary follows from Pontryagin duality for Abelian groups, see Jozsa, 

(1998). Two classical examples are 
m

G = Z  where 

 
2

( ) , , 0, , 1
ik

m

k e k m
π

χ = = −� � …  
 

and { }0,1
n

G = where 

 

( ) ( 1) ( , {0,1} )
xy n

x y x yχ = − ∈
 

 

in which FG is the usual discrete Fourier transform DFTm on ℤm and the 

Hadamard transform Hn, respectively. Another example would be the 
additive group of any finite field GF(q), which is discussed in details in the 

next section. 

 

MAIN RESULT 

Let G  be an (additive) Abelian group and H= ℂG. Let Λ be a Fourier 

basis for H. To each homomorphism ( , ),Hom G Gψ Λ∈ there correspond two 

operators on H H⊗ defined by 

 

: ( )A x y x y xψ ψ+�  

: ( )B x y x y yψ ψ+�
 

We say that a unitary operator U on H satisfies the control-target 

inversion property at ψ  if 

 

( ) ( )† †
U U A U U B⊗ ⊗ =ψ ψ . 

 

                                                
1 This is the classical (discrete) Fourier transform, but we call it quantum Fourier transform, 
as this is nowadays the standard convention of all the articles on Quantum Computation. 
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Theorem 1 (Main Result). Let G be a finite Abelian group and ψ  be a 

group homomorphism on G. Choose a Fourier basis Λ  of H= ℂG, then for 

each ( , )Hom G Gψ Λ∈ , the quantum Fourier transform FG satisfies the 

control-target inversion property at ψ . 

 

Proof. Let n G= , for x G∈ put 

 
1 ( )

x G xn y G
F F x y xχ

∈
= = ∑

 
 

and .
x

P y x y= + Then 

 
1

1

1

( )

( )

( )

( ) ( )

y x xn z G

xn z G

xn z G

x x x x

P F z y z

z y y z

y y z

y F y F

χ

χ

χ

χ χ

−∈

−∈

−∈

− − −

= +

= − +

= − +

= − =

∑
∑
∑

 

 

Therefore 

( )
( )
( )
( )
( )
( )

† † † 1

† 1
( )

† 1

† 1
( )

† 1
( )

†

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ( ))

( ) ( ) ( )

( ) ( )

( ) ( )

G G G G G G x yn z G

G G x z yn z G

G G x y yn z G

G G x y yn z G

G G x y yn z G

G G x y y

F F A F F x y F F A z z F

F F A z z P F

F F A z z z F

F F A z z z F

F F A z z F

F F A F z F

ψ ψ

ψ ψ

ψ

ψ ψ

ψ ψ

ψ ψ

χ

χ

χ χ ψ

χ χ

χ

−∈

−∈

−∈

−∈

+ −∈

+ −

⊗ ⊗ = ⊗

= ⊗

= ⊗

= ⊗

= ⊗

= ⊗

∑

∑

∑

∑

∑

( ) .x y y B x y QEDψψ= + =

 
As a basic example let us consider the main example of de Beaudrap 

et al. (2000). Let ( )GF q be the finite field with mq p= elements and fix an 

irreducible polynomial 
1

0
( )

mm i

ii
f Z Z a Z

−

=
= −∑ over ( )GF p , and let f  be 

the ideal generated by f, then  

 

GF(q)≃GF(p)[Z]⁄〈 f 〉 
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Fix a nonzero linear map : ( ) ( )GF q GF pϕ → and define the quantum 

Fourier transform  

 

( ) ( ), :
q

F CGF q CGF qϕ → by 

2 ( )

1
, ( )

:
i xy

p

q q y GF q
F x e y

∈∑�

π ϕ

ϕ
 

 

extended by linearity. Then the additive group ( )( ): ,G GF q= + is an 

Abelian group and for each x G∈  

 
2 ( )

( ) ( )
xy

p

x
y e y G

πϕ

χ = ∈
 

 

defines a character on G . Also we have the orthogonality relations 

 
2 ( ( ))

1 1

( ) ( )
( ) ( )

x y z

p

y z yzq qx GF q x GF q
x x e

πϕ

χ χ δ
−

∈ ∈
− = =∑ ∑  

  

(see the proof of [BCW,Theorem1]). Also if 
x v

χ χ=  then
2 ( ) 2 ( )xz yz

p pe e
πϕ πϕ

= , for 

each z G∈ . Since the range of ϕ  is in ( )GF p = ℤp and the analytic map 

( )expω ω� is one-to-one in the strip{ : 0 ( ) 2 }C Imω ω π∈ ≤ < , we get 

( ) ( )xz yzϕ ϕ= , for each z G∈ . If x y= , then we have q distinct elements 

( )z x y− in ker ( )ϕ , which means that ker ( ) Gϕ =  , i.e. 0ϕ = , which is a 

contradiction. Hence x y= , that is { }:
x

x Gχ ∈ is a complete set of Fourier 

basis elements for G. Now it is clear that, with respect to this basis, 

,G q
F F ϕ= . Next let s G∈  be any nonzero element and define 

( ) ( )s
x sx x Gψ = ∈ . This is clearly a group homomorphism of G  which is 

compatible with the above Fourier basis, namely 
 

( )( ) exp(2 (( ) ) / ) exp(2 (( ) ) / )

exp(2 ( ( ) ) / ) exp(2 ( ( )) / ) ( ( ))

s

s s y s

y z sy z p sz y p

i z y p i y z p z

ψχ πϕ πϕ

π ϕ ψ π ϕ ψ χ ψ

= =

= = =
  

 

In particular, Theorem 1 of (de Beaudrap et al., 2000) is a special 

case of our main theorem. Also note that for the additive group G of a 
commutative ring all the above observations are valid except that 

{ }:
x

x x G∈ is not necessarily a complete set of Fourier basis elements for G 

(we need commutativity of the ring in the second equality of the second line 
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of the above calculation to show that 
s

ψ is compatible with the Fourier 

basis).  

 
In the last section of de Beaudrap et al.,(2000) there is a version of 

the control-target inversion property for the ring of m m×  matrices over a 

commutative ring R. This is again a special case of a minor modification of 

the above theorem. Consider a pair ( ),ψ ϕ of homomorphisms of G such that 

ψ ϕ ϕ ψ=� � .We say that ( ),ψ ϕ is compatible with a given Fourier basis Λ 

of G if 

 

( )( ( )) ( ) ( , )
y y

z z y z Gϕχ ψ χ= ∈ . 

 

We denote the set of all such pairs by ( ), ,Hom G GΛ Λ . We say that a 

unitary operator U on H satisfies the control-target inversion property at 

( , )ψ φ  if 

 
† †( ) ( )U U A U U Bψ ϕ⊗ ⊗ =  . 

 

Then a slight modification of the proof of Theorem 1 shows that 
 

Theorem 2. Let G be a finite Abelian group and choose a Fourier basis     

Λ  of H= ℂG, then for each ( , ) ( , )Hom G Gψ ϕ ΛΛ∈ ,  the quantum Fourier 

transform FG satisfies the control-target inversion property at ( , )ψ ϕ . QED 

 

Now in section 4 of de Beaudrap et al., (2000), we are dealing with a ring R 

with QFT 
R

F for which a QFT ,R m
F is defined on the ring 

m m
R

×
of m m×  

matrices over R via tensor product. It is clear that if 
R

F  is the QFT on the 

additive group ( ),G R= + , then ,R m
F is the QFT on the product group 

m mG G× (which is the additive group of the ring 
m m

R
×

). The two group 

homomorphisms of m mG G×  are then ( )X SXψ =
 

and 

( ) ( ),
m m

X XS X Rϕ ×= ∈ where S is an element of 
m m

R
×

. Now with the 

natural choice of the Fourier basis for ( ),G R= +  we would have 

 

( ) ( ) ( , , )
y ys

sz z s y z Rχ χ= ∈
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Define the Fourier basis of m mG G× by 

 

, 1
( ) ( ) ( [ ], [ ] ).

ij

m m m

Y y ji ij ijj j
Z z Y y Z z Rχ χ ×

=
= = = ∈∏

 
 

Then for each , ,
m m

S Y Z R
×∈ , we have 

 

( ) ( )

( )
1

, 1, 1 , 1

, 1 , 1

( ), 1 , 1

( ) ( )

( ) ( )

. ( ) . ( ) ( ).

ij ij

ij ij jk

m
ik

ij jkj

m m m

Y y ji y jk kii ji j i j

m m

y jk ki y s kii j i j

m m

ki YS ki YSi j i jy s

SZ SZ s z

s z z

z Z Z

χ χ χ

χ χ

χ χ χ
=

== =

= =

= =

= =

= =

= = =
∑

∑∏ ∏

∏ ∏

∏ ∏
 

 

Therefore the control-target inversion property presented in section 4 of de 
Beaudrap et al., (2000) follows from Theorem 2 above. 

 

 

THE HIDDEN HOMOMORPHISM PROBLEM 

For a finite (additive) Abelian group G let a G∈  be a fixed element 

(usually the generator of G , when G  is cyclic), π be an arbitrary 

permutation of elements of G , and for a fixed Fourier basis �:={�x: x∊G} of 

H=ℂG , let  ( ),Hom G Gψ Λ∈ be a homomorphism of G  compatible with 

Λ , then the hidden homomorphism problem on G  is as follows. 

 
Hidden homomorphism problem. Given a black-box performing the 

unitary transformation that map x y  to (( )x y aπ ψ+ , find ( )aψ .  

 

In this section we show that, using the QFT, a single query is sufficient to 

solve the problem exactly, whereas in the classical case, even for cyclic 

groups, 
1

2G
 

Ω 
 

queries are needed to solve the problem with bounded 

error. 
 

Theorem 3. On any finite Abelian group G, performing 
G

F and 
†

,G
F  a 

single query is sufficient to solve the hidden homomorphism problem 

exactly. 
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Proof. Consider the unitary transformation 

 

: ( )U y yπ π�
 

 

implementing π , and recall that 

 

: ( )A x y x y xψ ψ+� , 

 

then the black-box is implemented by 

 

, ( ) : ( ( ))U I U A x y x y xπ ψ π ψ π ψ= ⊗ +� . 

 
To perform the quantum procedure, first initialize state of the two G-valued 

registers to 0 a , where 0 is the identity of G, then perform the following 

consecutive operations: apply †

G G
F F⊗  then query the black-box and 

apply †

G G
F F⊗ . Finally measure the first register. The states of the two 

registers during the execution of this algorithm are as follows: 

                                       
†

†

† †

† †

† †

0 0 ( ) ( ) 0

( )( ) 0 ( )( ) ( )

( ) ( ) ( ) .

GG

GG

UF F

G G G G

G G G G

F F

G G G G

a F F a I U A F F a

I U F F a I U F F a a

F a U F a a F U F a

πψ

π ψ

π π

π π

ψ

ψ ψ

⊗

⊗

→ → ⊗ ⊗

= ⊗ ⊗ = ⊗ ⊗

= →
 

 

Now measuring the first register gives ( )aψ . QED 

Theorem 4. On any finite cyclic group G of prime order, 
1

2G
 

Ω 
 

 queries 

are necessary to solve the hidden homomorphism problem within probability 

error 
1

2
. 

 

Proof. By an argument similar to Theorem 3 in de Beaudrap et al.,(2000) we 
may use deterministic algorithms with probabilistic input data (here we put   

1a = , the generator of G). Set ( ),Hom G Gψ∈  and π  randomly with 

uniform distribution. After k (distinct) queries ( ) ( )1, 1 ,
,...,

k k
x y x y , if there are 

two indecies i j≠ such that ( ( )) ( ( ))
i i j j

y x y xπ ψ π ψ+ = + , then, as π  is 
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one-to-one, ( ) ( ) (1)
i j j i j i

y y x x x xψ ψ− = − = − , and (1)ψ  is uniquely 

determined, otherwise we have ( )1 / 2G k k− −  possibilities for (1)ψ which 

are equally likely. A simple argument shows that the probability of a 

collision occurring at the thk query is at most 
1

( 1)( 2) / 2

k

G k k

−

− − −
. 

Therefore the probability of a collision occurring in the first m queries is 

bounded above by 

 

1

1

( 1)( 2) / 2

m

k

k

G k k=

−

− − −
∑

 
 

which is no bigger than
2

2 2

2

1 12 2

m m
k m

k kG k G m= =− −
≤∑ ∑ , and this being at least 

1

2
 , 

we get 

1

22

3
m G

 
≥  
 

 . QED 
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